Acknowledgement
Supported by : Australian Research Counci
References
- Agrawal, A.K. and Yang, J.N. (1999), "Design of passive energy dissipation systems based on LQR control methods", J. Int. Mat. Syst. Struct., 10(12), 933-944. https://doi.org/10.1106/FB58-N1DG-ECJT-B8H4
- Behrooz, M., Wang, X. and Gordaniejad, F. (2014a), "Modeling of a new semi-active/passive magnetorheological elastomer isolator", Smart Mater. Struct., 23(4), 045013. https://doi.org/10.1088/0964-1726/23/4/045013
- Behrooz, M., Wang, X. and Gordaniejad, F. (2014b), "Performance of a new semi-active/passive magnetorheological elastomer isoaltor", Smart Mater. Struct., 23(4), 045014. https://doi.org/10.1088/0964-1726/23/4/045014
- Chen, L. and Jerrams, S. (2011), "A rheological model of the dynamic behaviour of magnetorheological elastomers", J. Appl. Phys., 110(1), 013513. https://doi.org/10.1063/1.3603052
- Du, H., Li, W. and Zhang, N. (2011), "Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator", Smart Mater. Struct., 20(10), 105003. https://doi.org/10.1088/0964-1726/20/10/105003
- Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Eem, S., Jung, H. and Koo, J. (2012), "Modeling of magneto-rheological elastomers for harmonic shear deformation", IEEE Trans. Magnet., 48(11), 3080-3083. https://doi.org/10.1109/TMAG.2012.2205140
- Feng, J., Xuan, S., Liu, T., Ge, L., Yan, L., Zhou, H. and Gong, X. (2015), "The prestress-dependent mechanical response of magnetorheological elastomers", Smart Mater. Struct., 24(8), 085032. https://doi.org/10.1088/0964-1726/24/8/085032
- Filippov, A.F. and Arscott, F.M. (1988), Differential equations with discontinuous righthand sides, Kluwer Academic Publishers, Netherlands.
- Ginder, J.M., Nichols, M.E., Elie, L.D. and Tardiff, J.L. (1999), "Magnetorheological elastomers: properties and applications", Proc. SPIE, 3675, 131-138. https://doi.org/10.1117/12.352787
- Gu, X., Li, J., Li, Y. and Askari, M. (2015), "Frequency control of smart base isolation system employing a novel adaptive magnetorheological elastomer base isolator", J. Int. Mat. Syst. Struct., 27(7), 849-858.
- Ha, Q.P., Kwok, N.M., Nguyen, M.T., Li, J. and Samali, B. (2008), "Mitigation of seismic responses of building structures using MR dampers with Lyapunov-based control", Struct. Control Hlth., 15(6), 604-621. https://doi.org/10.1002/stc.218
- Ha, Q.P., Nguyen, M.T., Li, J. and Kwok, N.M. (2013), "Smart structures with current-driven MR dampers: modelling and second-order sliding mode control", IEEE-ASME Trans. Mech., 18(6), 1702-1711. https://doi.org/10.1109/TMECH.2013.2280282
- Ha, Q.P., Royel, S., Li, J. and Li, Y. (2015), "Hysteresis modeling of smart structure MR devices using describing functions", IEEE-ASME Trans. Mech., 21(1), 44-50.
- Hosseini, M. and Farsangi, E.N. (2012), "Telescopic columns as a new base isolation system for vibration control of high-rise buildings", Earthq. Struct., 3(6), 853-867. https://doi.org/10.12989/eas.2012.3.6.853
- Jansen, L. and Dyke, S. (2000), "Semiactive control strategies for MR dampers: comparative study", J. Eng. Mech., 126(8), 795-803. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
- Levant, A. (2007), "Principles of 2-sliding mode design", Automatica, 43(4), 576-586. https://doi.org/10.1016/j.automatica.2006.10.008
- Li, W.H., Zhou, Y. and Tian, T.F. (2010), "Viscoelastic properties of MR elastomers under harmonic loading", Rheol Acta, 49(7), 733-740. https://doi.org/10.1007/s00397-010-0446-9
- Li, Y. and Li, J. (2015), "A highly adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modeling", J. Vib. Acoust., 137(1), 011009. https://doi.org/10.1115/1.4028228
- Li, Y., Li, J., Li, W. and Du, H. (2014), "A state-of-the-art review on magnetorheological elastomer devices", Smart Mater. Struct., 23(12), 123001. https://doi.org/10.1088/0964-1726/23/12/123001
- Li, Y., Li, J., Tian, T. and Li, W. (2013), "A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control", Smart Mater. Struct., 22(9), 095020. https://doi.org/10.1088/0964-1726/22/9/095020
- Mei, Z., Peng, Y. and Li, J. (2013), "Experimental and analytical studies on stochastic seismic response control of structures with MR dampers", Earthq. Struct., 5(4), 395-416. https://doi.org/10.12989/eas.2013.5.4.395
- Murase, M. and Tsuji, M. and Takewaki, I. (2013), "Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection", Earthq. Struct., 4(6), 649-670. https://doi.org/10.12989/eas.2013.4.6.649
- Pan, W.T. (2012), "A new fruit fly optimization algorithm: taking the financial distress model as an example", Knowl-based Syst., 26(2), 69-74. https://doi.org/10.1016/j.knosys.2011.07.001
- Pan, W.T. (2013), "Using modified fruit fly optimization algorithm to perform the function test and case studies", Connect. Sci., 25(2-3), 151-160. https://doi.org/10.1080/09540091.2013.854735
- Pan, W.T. (2014), "Mixed modified fruit fly optimization algorithm with general regression neural network to build oil and gold prices forecasting model", Kybernetes, 43(7), 1053-1063. https://doi.org/10.1108/K-02-2014-0024
- Pisano, A. and Usai, E. (2011), "Sliding mode control: A survey with applications in math", Math. Comput. Simulat., 81(5), 954-979. https://doi.org/10.1016/j.matcom.2010.10.003
- Spencer, B.F. (2004), "Benchmark structural control problems for seismic and wind-excited structures: Editorial", J. Eng. Mech., 130(4), 363-365. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(363)
- Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Takewaki, I. and Tsujimoto, H. (2011), "Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands", Earthq. Struct., 2(2), 171-187. https://doi.org/10.12989/eas.2011.2.2.171
- Tavakoli, H.R., Naghavi, F. and Goltabar, A.R. (2015), "Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse", Earthq. Struct., 9(3), 639-656. https://doi.org/10.12989/eas.2015.9.3.639
- Yang, J., Du, H., Li, W., Li, Y., Li, J., Sun, S. and Deng, H.X. (2013), "Experimental study and modeling of a novel magnetorheological elastomer isolator", Smart Mater. Struct., 22(11), 117001. https://doi.org/10.1088/0964-1726/22/11/117001
- Yang, J., Sun, S.S., Du, H., Li, W.H., Alici, G. and Deng, H.X. (2014), "A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction", Smart Mater. Struct., 23(10), 105023. https://doi.org/10.1088/0964-1726/23/10/105023
- Yu, Y., Li, Y. and Li, J. (2015a), "Forecasting hysteresis behaviours of magnetorheological elastomer base isolator utilizing a hybrid model based on support vector regression and improved particle swarm optimization", Smart Mater. Struct., 24(3), 035025. https://doi.org/10.1088/0964-1726/24/3/035025
- Yu, Y., Li, Y. and Li, J. (2015b), "Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator", Meccanica, 50(11): 2691-2707. https://doi.org/10.1007/s11012-015-0179-z
- Yu, Y., Li, Y., Li, J. and Gu, X. (2016), "A hysteresis model for dynamic behaviour of magnetorheological elastomer base isolator", Smart Mater. Struct., 25(5), 055029. https://doi.org/10.1088/0964-1726/25/5/055029
Cited by
- Feasibility study of an adaptive mount system based on magnetorheological elastomer using real-time hybrid simulation 2018, https://doi.org/10.1177/1045389X18754347
- Nonlinear Characterization of the MRE Isolator using Binary-Coded Discrete CSO and ELM 2017, https://doi.org/10.1142/S0219455418400072
- Genetic algorithm based nonlinear self-tuning fuzzy control for time-varying sinusoidal vibration of a magnetorheological elastomer vibration isolation system vol.27, pp.8, 2018, https://doi.org/10.1088/1361-665X/aacd32
- Investigations on response time of magnetorheological elastomer under compression mode vol.27, pp.5, 2018, https://doi.org/10.1088/1361-665x/aab63e
- The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I vol.15, pp.5, 2018, https://doi.org/10.12989/eas.2018.15.5.513
- Chattering-free sliding mode control with a fuzzy model for structural applications vol.69, pp.3, 2016, https://doi.org/10.12989/sem.2019.69.3.307
- Magnetic stimuli-response properties of polyurethane-based magnetorheological soluble gel vol.6, pp.9, 2016, https://doi.org/10.1088/2053-1591/ab2dc3
- Study on mechanical properties of a novel polyurethane sponge magnetorheological elastomers in compressive mode vol.6, pp.11, 2016, https://doi.org/10.1088/2053-1591/ab439f
- Experimental Investigation on Semi-Active Control of Base Isolation System Using Magnetorheological Dampers for Concrete Frame Structure vol.9, pp.18, 2016, https://doi.org/10.3390/app9183866
- Time delay analysis and constant time-delay compensation control for MRE vibration control system with multiple-frequency excitation vol.29, pp.1, 2020, https://doi.org/10.1088/1361-665x/ab3cfa
- Magnetorheological Elastomer Precision Platform Control Using OFFO-PID Algorithm vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/3025863
- Fuzzy-neural network control for a Magnetorheological elastomer vibration isolation system vol.29, pp.7, 2016, https://doi.org/10.1088/1361-665x/ab874d
- A novel bi-directional shear mode magneto-rheological elastomer vibration isolator vol.31, pp.17, 2016, https://doi.org/10.1177/1045389x20942314
- Improving transient magnetorheological response of magnetorheological elastomer by incorporating CIP@FeNi particles vol.30, pp.2, 2021, https://doi.org/10.1088/1361-665x/abcf1c
- Comparison of classical and reliable controller performances for seismic response mitigation vol.20, pp.3, 2016, https://doi.org/10.12989/eas.2021.20.3.353