References
- Asadollahfardi, G. Taklify, A. and Ghanbari, A. (2012), "Application of artificial neural network to predict TDS in Talkheh Rud River", J. Irrigat. Drain. Eng., 138(4), 363-370. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000402
- Asadollahfardi, G. Moradinejad, S. and Asadollahfardi, R. (2013), "Sodium adsorption ratio (SAR) prediction of Chalghazi River using artificial neural network (ANN), Iran", Curr. World Sign., Syst., 2(4), 303-314.
- Baxter, C.W. (2001), Artificial Intelligence Systems for Water Treatment Plant, AWWA Research Foundation, American water works association, ISBN1-58321-140-3, USA.
- Chen, W.B. and Liu, W.C. (2014), "artificial neural network modeling of dissolved oxygen in reservoir", J. Environ. Monit. Assess., 186(2), 1203-1217. https://doi.org/10.1007/s10661-013-3450-6
- Cybenko, G. (1989), "Approximation by superposition of a sigmoid function Mathematics of Control, Signals, and Systems (MCSS), 2(4), 303-314. https://doi.org/10.1007/BF02551274
- Dogan, E. Koklu and Sengorur, B. (2007), "Estimation of biological oxygen demand using artificial neural network", International Earthquake Symposium, Kocaeli, Turkey, October.
- Dogan, E., Sengorur, B.B. and Koklu, R. (2009), "Modeling the biological oxygen demand of the Melan River in Turkey using an artificial neural network technique", J. Environ. Manage., 90, 1229-1235. https://doi.org/10.1016/j.jenvman.2008.06.004
- Dawson, C.W. and Wibly, R.L. (2001), "Hydrological modeling using artificial neural networks", Prog. Phys. Geography, 25(80), 81-108.
- Gardner, C.W. and Dorling, S.R. (1998), "Artificial neural network (the multilayer perceptron)-a review of application in atmospheric sciences", Atmospher. Environ., 32(14-15), 2626-2636.
- Han, H.L. Chen, Q-L. and Qiao, J.-F. (2011), "An efficient self-organizing RBF neural network for water quality prediction", Neural Networks, 24(7), 717-725. https://doi.org/10.1016/j.neunet.2011.04.006
- Hornik, K.M., Stinchocombe, M. and White, H. (1989), "Multilayer feed forward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Hornik, K.M. (1991), "Approximation capabilities of multilayer feedforward Networks", Neural Networks, 4(2), 251-257. https://doi.org/10.1016/0893-6080(91)90009-T
- Hornik, K.M. (1993), "Some new results on neural network approximation", Neural Networks, 6(8), 1069-1072. https://doi.org/10.1016/S0893-6080(09)80018-X
- Huang, W. and Foo, S. (2002), "Neural network modeling of salinity variation in the Apalachicola River", Water Res., 36(1), 356-362 https://doi.org/10.1016/S0043-1354(01)00195-6
- Ilanloo, M. (2011), "A comparative study of the fuzzy logic approach for landslide susceptibility mapping using GIS: An experience of Karaj Dam basin in Iran", Procedia Soc. Behav. Sci., 19, 668-676. https://doi.org/10.1016/j.sbspro.2011.05.184
- Karakaya, N., Evrendilek, F. and Gungor, K. (2011), "Modeling and validating long-term dynamics of Diel dissolved oxygen with particular reference to pH in a temperate shallow lake (Turkey)", Clean-Soil, Air, Water, 39 (11), 966-971. https://doi.org/10.1002/clen.201100051
- Keiner, L.E. and Yan, X. (1998), "A neural network model for Estimation Sea surface chlorophyll mapper imaginary", Remote Sens. Environ., 66(2), 153-163. https://doi.org/10.1016/S0034-4257(98)00054-6
- Kohohen, T. (1984), Self-organization and Associative Memory, New York: Springer-Verlag.
- Krause, P., Boyle, D. and Base, F. (2005), "Comparison of different efficiency criteria for hydrological model assessment", Adv. Geosci. J., 5, 89-97. https://doi.org/10.5194/adgeo-5-89-2005
- Kuo, Y-M., Liu, C-W. and Lin, K-H. (2004), "Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of Blackfoot disease in Taiwan", Water Res., 38(1), 148-158. https://doi.org/10.1016/j.watres.2003.09.026
- Leshno, M., Lin, V.Y., Pinkus, A. and Schocken, S. (1993), "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function", Neural Networks, 6(6), 861-867. https://doi.org/10.1016/S0893-6080(05)80131-5
- Musavi-Jahromi, S.H. and Golabi, M. (2008), "Application of artificial neural network in the river water quality modeling. Karoon River, Iran", J. Appl. Sci., 8(12), 2324-2328. https://doi.org/10.3923/jas.2008.2324.2328
- Menhaj, M. (1998), Computational Intelligence, Fundamentals of Artificial Neural Networks, Vol.1 Amirkabir University publisher.
- Rene, E.R. and Saidutta, M.B. (2008), "Prediction of water quality indices by regression analysis and artificial neural networks", Int. J. Environ. Res., 2(2), 183-188,
- Razavi, F. (2006), "Rain prediction applying artificial neural network", M.S thesis, Amir Kabir Univ., Tehran, Iran.
- Rucinski, D.K., Beletsky, D., DePinto, J.V., Schwab, D.J. and Scavia, D. (2010), "A simple 1-dimensional, climate based dissolved model to central basin of Lake Erie", J. Great Lakes Res., 36(3), 465-476. https://doi.org/10.1016/j.jglr.2010.06.002
- Singh K.P. Basant, A. Malik, A. and Jain, G. (2009), "Artificial neural network modelling of the river water quality-A case study", Ecological Model., 220(6), 888-895. https://doi.org/10.1016/j.ecolmodel.2009.01.004
- Song, X.M. (1996), "Radial basis function networks for empirical modeling of chemical process", MSc thesis, University of Helsinki.
- Willmott, C. and Matsuura, K. (2005), "Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance", Climate Res. J., 30(1), 79-82. https://doi.org/10.3354/cr030079
- Zealand, C.M., Burn, D.H. and Simonovic, S.P. (1999), "Short term stream flow forecasting using artificial neural networks", J. Hydrol., 214(1), 32-48. https://doi.org/10.1016/S0022-1694(98)00242-X
Cited by
- Prediction of UCS and STS of Kaolin clay stabilized with supplementary cementitious material using ANN and MLR vol.5, pp.2, 2016, https://doi.org/10.12989/acd.2020.5.2.195