DOI QR코드

DOI QR Code

Enhancement of Methylene Blue dye adsorption by Fe-Hydroxyapatite composite

  • Cifci, Deniz Izlen (Corlu Engineering Faculty, Environmental Engineering Department, Namik Kemal University)
  • Received : 2016.10.04
  • Accepted : 2016.12.06
  • Published : 2016.12.25

Abstract

Synthesized hydroxyapatite (Hyd) and Fe-hydroxyapatite (Fe-Hyd) composite were used for the removal of Methylene Blue (MB) from aqueous solutions in this study. The effect of adsorbent amount, pH and initial MB concentration were carried out to investigate in the aqueous solution. The kinetic study shows that the MB adsorption process with Hyd or Fe-Hyd follow pseudo-second order kinetic model. Experimental results are well fitted to the Langmuir isotherm model. The maximum adsorption capacities of Hyd and Fe-Hyd were obtained as 2.90 mg/g and 5.64 mg/g for MB according to Langmuir Isotherm models, respectively. Fe-Hyd composite increased the adsorption capacity of Hyd by 1.95 times that Hyd. It is concluded that Fe-Hyd composite is promising and economical adsorbent for MB removal in the aqueous solution.

Keywords

Acknowledgement

Supported by : NKU

References

  1. Ai, L., Zhang, C., Liao, F., Wang, Y., Li, M., Meng, L. and Jiang, J. (2011), "Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis", J. Hazard. Mater., 198, 282-290. https://doi.org/10.1016/j.jhazmat.2011.10.041
  2. Allam, K., El Bouari, A., Belhorma, B. and Bih, L. (2016), "Removal of methylene blue from water using hydroxyapatite submitted to microwave irradiation", J. Water Resource Prot., 8(03), 358-371. https://doi.org/10.4236/jwarp.2016.83030
  3. Asgari, G., Mohammadi, A.S., Mortazavi, S.B. and Ramavandi, B. (2013), "Investigation on the pyrolysis of cow bone as a catalyst for ozone aqueous decomposition: Kinetic approach", J. Anal. Appl. Pyrol., 99, 149-154. https://doi.org/10.1016/j.jaap.2012.10.008
  4. Bell, L.C., Posner, A.M. and Quirk, J.P. (1973), "The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions", J. Colloid Interf. Sci., 42(2), 250-261. https://doi.org/10.1016/0021-9797(73)90288-9
  5. Cui, L., Hu, L., Guo, X., Zhang, Y., Wang, Y., Wei, Q. and Du, B. (2014), "Kinetic, isotherm and thermodynamic investigations of Cu2+ adsorption onto magnesiumhydroxyapatite/ferroferric oxide nano-composites with easy magnetic separation assistance", J. Mol. Liq., 198, 157-163. https://doi.org/10.1016/j.molliq.2014.06.016
  6. Dawodu, F.A. and Akpomie, K.G. (2014), "Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay", J. Mater. Res. Technol., 3(2), 129-141. https://doi.org/10.1016/j.jmrt.2014.03.002
  7. Feng, Y., Gong, J.-L., Zeng, G.-M., Niu, Q.-Y., Zhang, H.-Y., Niu, C.-G., Deng, J.-H. and Yan, M. (2010), "Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents", Chem. Eng. J., 162(2), 487-494. https://doi.org/10.1016/j.cej.2010.05.049
  8. Hashem, A., Ahmad, F. and Badawy, S.M. (2016), "Adsorption of direct green 26 onto fix 3500 treated sawdust: equilibrium, kinetic and isotherms", Desalin. Water Treat., 57(28), 13334-13346. https://doi.org/10.1080/19443994.2015.1056841
  9. Low, L.W., Teng, T.T., Rafatullah, M., Morad, N. and Azahari, B. (2013), "Adsorption studies of methylene blue and malachite green from aqueous solutions by pretreated lignocellulosic materials", Separ. Sci. Technol., 48(11), 1688-1698. https://doi.org/10.1080/01496395.2012.756912
  10. Mahmud, K., Islam, Md. A., Mitsionis, A., Albanis, T. and Vaimakis, T. (2012), "Adsorption of direct yellow 27 from water by poorly crystalline hydroxyapatite prepared via precipitation method", Desalin. Water Treat., 41(1-3), 170-178. https://doi.org/10.1080/19443994.2012.664699
  11. Nguyen, V.C. and Pho, Q.H. (2014), "Preparation of chitosan coated magnetic hydroxyapatite nanoparticles and application for adsorption of reactive blue 19 and Ni$^{2+}$ ions", Sci. World J., 2014, ID 273082, 1-9.
  12. Nie, Y., Hu, C. and Kong, C. (2012), "Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite", J. Hazard. Mater., 233-234, 194-199. https://doi.org/10.1016/j.jhazmat.2012.07.020
  13. Saber-Samandari, S., Nezafati, N. and Kovan, Y. (2014), "Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads", J. Environ. Manage., 146, 481-490. https://doi.org/10.1016/j.jenvman.2014.08.010
  14. Sarici-Ozdemir, C. and Onal, Y. (2014), "Error analaysis studies of dye adsorption onto activated carbon from aqueous solutions", Particul. Sci. Technol., 32(1), 20-27. https://doi.org/10.1080/02726351.2013.791360
  15. Srilakshmi, C. and Saraf, R. (2016), "Ag-doped hydroxyapatite as efficient adsorbent for removal of Congo red dye from aqueous solution: Synthesis, kinetic and equilibrium adsorption isotherm analysis", Micropor. Mesopor. Mat., 219, 134-144. https://doi.org/10.1016/j.micromeso.2015.08.003
  16. Valizadeh, S., Rasoulifard, M.H. and Dorraji M.S.S. (2016), "Adsorption and photocatalytic degradation of organic dyes onto crystalline and amorphous hydroxyapatite: Optimization, kinetic and isotherm studies", Korean J. Chem. Eng., 33(2), 481-489. https://doi.org/10.1007/s11814-015-0172-1
  17. Wei, W., Sun, R., Cui, J. and Wei, Z. (2010), "Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite", Desalination, 263(1), 89-96. https://doi.org/10.1016/j.desal.2010.06.043
  18. Yang, Z., Fang, Z., Zheng, L., Cheng, W., Tsang, P.E., Fang, J. and Zha, D. (2016), "Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite", Ecotox. Environ. Safe., 132, 224-230. https://doi.org/10.1016/j.ecoenv.2016.06.008
  19. Zhuang, F., Tan, R., Shen, W., Zhang, X., Xu, W. and Song, W. (2015), "Monodisperse magnetic hydroxyapatite/Fe3O4 microspheres for removal of lead(II) from aqueous solution", J. Alloy. Compd., 637, 531-537. https://doi.org/10.1016/j.jallcom.2015.02.216

Cited by

  1. A simple and rapid approach to modeling chromium breakthrough in fixed bed adsorber vol.7, pp.1, 2016, https://doi.org/10.12989/aer.2018.7.1.029
  2. Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials vol.8, pp.1, 2016, https://doi.org/10.12989/aer.2019.8.1.023
  3. Kinetic, Isotherm and Thermodynamic Study of Acid Blue 29 Textile Dye Removal from Aqueous Solution by Using Hydroxyapatite and Partially Hydrolyzed Polyacrylamide Modified Hydroxyapatite vol.95, pp.13, 2021, https://doi.org/10.1134/s0036024421130136