Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Che, A.L., Wu, Z.J. and Wang, P. (2014), "Stability of pile foundations base on warming effects on the permafrost under earthquake motions", Soils Found., 54(4), 639-647. https://doi.org/10.1016/j.sandf.2014.06.006
- Chen, X.B., Liu, J.K., Liu, H.X. and Wang, Y.Q. (2006), Frost Action of Soil and Foundation Engineering, Science Press, Beijing, China. [In Chinese]
- Cheng, G.D., Wu, Q.B. and Ma, W. (2008), "Innovative designs of the permafrost for the Qinghai-Tibet Railway", Proceedings of the 9th International Conference on Permafrost, Fairbanks, AL, USA, June-July, pp. 239-245.
- Fish, A.M. (1991), "Strength of frozen soil under a combined stress state", Proceedings of the 6th International Symposium Ground Freezing, Beijing, China, September, pp. 135-145.
- Hansson, K., Simůnek, J. and Mizoguchi, M. (2004), "Water flow and heat transport in frozen soil: numerical solution and freeze-thaw application", Vadose Zone J., 3(2), 693-704. https://doi.org/10.2136/vzj2004.0693
- Itasca (1999), Flac manual: Theoretical background, Itasca Consulting Group, Minneapolis, MN, USA.
- Kamei, T., Ahmed, A. and Shibi, T. (2012), "Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilized with recycled Bassanite", Cold Reg. Sci. Technol., 82, 124-129. https://doi.org/10.1016/j.coldregions.2012.05.016
- Kanevskiy, M., Shur, Y., Krzewinski, T. and Dillon, M. (2013), "Structure and properties of ice-rich permafrost near Anchorage Alaska", Cold Reg. Sci. Technol., 93, 1-11. https://doi.org/10.1016/j.coldregions.2013.05.001
- Lai, Y.M., Li, S.Y., Qi, J.L. and Chang, X.X. (2008), "Strength distributions of warm frozen clay and its stochastic damage constitutive model", Cold Reg. Sci. Technol., 53(2), 200-215. https://doi.org/10.1016/j.coldregions.2007.11.001
- Lai, Y.M., Yang, Y.G., Chang, X.X. and Li, S.Y. (2010a), "Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics", Int. J. Plasticity, 26(10), 1461-1484. https://doi.org/10.1016/j.ijplas.2010.01.007
- Lai, Y.M., Gao, Z.H., Zhang, S.J. and Chang, X.X. (2010b), "Stress-strain relationships and nonlinear Mohr strength criteria of frozen sandy clay", Soils Found., 50(1), 45-53. https://doi.org/10.3208/sandf.50.45
- Li, S.Y., Lai, Y.M., Zhang, M.Y. and Dong, Y.H. (2009a), "Study on long-term stability of Qinghai-Tibet Railway embankment", Cold Reg. Sci. Technol., 57(2-3), 139-147. https://doi.org/10.1016/j.coldregions.2009.02.003
- Li, S.Y., Lai, Y.M., Zhang, M.Y. and Jin, L. (2009b), "Seismic analysis of embankment of Qinghai-Tibet railway", Cold Reg. Sci. Technol., 55(1), 151-159. https://doi.org/10.1016/j.coldregions.2008.07.005
- Li, S.Y., Lai, Y.M., Zhang, S.J. and Liu, D. (2009c), "An improved statistical damage constitutive model for warm frozen clay based on Mohr-Coulomb criterion", Cold Reg. Sci. Technol., 57(2-3), 154-159. https://doi.org/10.1016/j.coldregions.2009.02.010
- Li, X., Cao, W.G. and Su, Y.H. (2012), "A statistical damage constitutive model for softening behavior of rocks", Eng. Geol., 143-144, 1-17. https://doi.org/10.1016/j.enggeo.2012.05.005
- Ma, W. and Wang, D. (2014), Frozen Soil Mechanics, Science Press, Beijing. [In Chinese]
- Ma, W., Qi, J.L. and Wu, Q.B. (2008a), "Analysis of the Deformation of Embankments on the Qinghai-Tibet Railway", J. Geotech. Geoenviron. Eng., 134(11), 1645-1654. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1645)
- Ma, W., Zhang, L.X. and Wu, Q.B. (2008b), "Control of asymmetrical subgrade temperature with crushedrock embankments along the permafrost region of the Qinghai-Tibet railway", Proceedings of the 9th International Conference on Permafrost, Fairbanks, AL, USA, June-July, pp. 1099-1104.
- Ma, W., Feng, G.L., Wu, Q.B. and Wu, J.J. (2008c), "Analyses of temperature fields under the embankment with crushed-rock structures along the Qinghai-Tibet railway", Cold Reg. Sci. Technol., 53(3), 259-270. https://doi.org/10.1016/j.coldregions.2007.08.001
- Ma, W., Cheng, G.D. and Wu, Q.B. (2009), "Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad", Cold Reg. Sci. Technol., 59(1), 3-11. https://doi.org/10.1016/j.coldregions.2009.07.007
- Matsumura, S., Miura, S., Yokohama, S. and Kawamura, S. (2015), "Cyclic deformation-strength evaluation of compacted volcanic soil subjected to freeze-thaw sequence", Soils Found., 55(1), 86-98. https://doi.org/10.1016/j.sandf.2014.12.007
- Morgenstern, N.R. and Nixon, J.F. (1971), "One-dimensional consolidation of thawing soils", Can. Geotech. J., 8(4), 558-565. https://doi.org/10.1139/t71-057
- Qi, J.L., Pieter, A.V. and Cheng, G.D. (2006), "A review of the influence of freeze-thaw cycles on soil geotechnical properties", Permafrost Periglac., 17(3), 245-252. https://doi.org/10.1002/ppp.559
- Qi, J.L., Sheng, Y., Zhang, J.M. and Wen, Z. (2007), "Settlement of embankment in permafrost regions in the Qinghai-Tibet Plateau", Norw. J. Geogr., 61(2), 49-55.
- Qi, J.L., Yao, X.L., Yu, F. and Liu, Y.Z. (2012), "Study on thaw consolidation of permafrost under roadway embankment", Cold Reg. Sci. Technol., 81, 48-54. https://doi.org/10.1016/j.coldregions.2012.04.007
- Qi, J.L., Yao, X.L. and Yu, F. (2013), "Consolidation of thawing permafrost considering phase change", KSCE J. Civil Eng., 17(6), 1293-1301. https://doi.org/10.1007/s12205-013-0240-1
- Tsytovich, N.A. (1975), Mechanics of Frozen Soil, McGraw-Hill, New York, NY, USA.
- Wang, S.H., Qi, J.L., Yu, F. and Yao, X.L. (2013), "A novel method for estimating settlement of embankment in cold regions", Cold Reg. Sci. Technol., 88, 50-58. https://doi.org/10.1016/j.coldregions.2012.12.009
- Wang, S.H., Qi, J.L., Yin, Z.Y., Zhang, J.M. and Ma, W. (2014), "A simple rheological element based creep model for frozen soils", Cold Reg. Sci. Technol., 106-107, 47-54. https://doi.org/10.1016/j.coldregions.2014.06.007
- Wang, T.L., Liu, Y.J., Yan, H. and Xu, L. (2015), "An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles", Cold Reg. Sci. Technol., 112, 51-65. https://doi.org/10.1016/j.coldregions.2015.01.004
- Watanabe, K. and Wake, T. (2008), "Hydraulic conductivity of frozen unsaturated soil", Proceedings of the 9th International Conference of on Permafrost, Fairbanks, AL, USA, June-July, pp. 147-152.
- Wu, Q.B. and Zhang, T.J. (2008), "Recent permafrost warming on the Qinghai-Tibetan plateau", J. Geophys. Res.: Atmos, 113(D13). DOI: 10.1029/2007JD009539
- Wu, Qingbai, Dong, X.F. and Liu, Y.Z. (2007), "Responses of permafrost on the Qinghai-Tibet plateau to climate change and engineering construction", Arct. Antarct. Alp. Res., 39(4), 682-687. https://doi.org/10.1657/1523-0430(07-508)[WU]2.0.CO;2
- Yang, C.S., He, P., Cheng, G.D., Zhu, Y.L. and Zhao, S.P. (2003), "Testing study on influence of freezing and thawing on dry density and water content of soil", Chinese J. Rock Mech. Eng., 22(Supp. 2), 2695-2699. [In Chinese]
- Yang, M.X., Nelson, F.E., Shiklomanov, N.I., Guo, D.L. and Wan, G.N. (2010a), "Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research", Earth-Sci. Rev., 103(1-2), 31-44. https://doi.org/10.1016/j.earscirev.2010.07.002
- Yang, Y.G., Lai, Y.M., Dong, Y.H. and Li, S.Y. (2010b), "The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures", Cold Reg. Sci. Technol., 60(2), 154-160. https://doi.org/10.1016/j.coldregions.2009.09.001
- Yao, X.L., Qi, J.L. and Wu, W. (2012), "Three dimensional analysis of large strain thaw consolidation in permafrost", Acta Geotech., 7(3), 193-202. https://doi.org/10.1007/s11440-012-0162-y
- Yu, F., Qi, J.L., Yao, X.L. and Liu, Y.Z. (2012), "Degradation process of permafrost underneath embankments along Qinghai-Tibet Highway: An engineering view", Cold Reg. Sci. Technol., 85, 150-156. DOI: 10.1016/j.coldregions.2012.09.001
- Yu, F., Qi, J.L., Yao, X.L. and Liu, Y.Z. (2013), "In-situ monitoring of settlement at different layers under embankments in permafrost regions on the Qinghai-Tibet Plateau", Eng. Geol., 160, 44-53. https://doi.org/10.1016/j.enggeo.2013.04.002
- Yu, F., Qi, J.L. and Yao, X.L. (2014), "Analysis on the settlement of roadway embankments in permafrost regions", J. Earth Sci., 25(4), 764-770. https://doi.org/10.1007/s12583-014-0464-0
- Zheng, B., Zhang, J.M. and Qin, Y.H. (2010), "Investigation for the deformation of embankment underlain by warm and ice-rich permafrost", Cold Reg. Sci. Technol., 60(2), 161-168. https://doi.org/10.1016/j.coldregions.2009.08.012
- Zhou, J. and Tang, Y.Q. (2015), "Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing", Eng. Geol., 190, 98-108. https://doi.org/10.1016/j.enggeo.2015.03.002
Cited by
- A new approach to simulate the supporting arch in a tunnel based on improvement of the beam element in FLAC3D vol.18, pp.3, 2017, https://doi.org/10.1631/jzus.A1600508
- Thermal and settlement analyses under a riverbank over permafrost vol.91, 2017, https://doi.org/10.1016/j.compgeo.2017.07.002
- Strength behaviors and meso-structural characters of loess after freeze-thaw vol.148, 2018, https://doi.org/10.1016/j.coldregions.2018.01.011
- Mechanism of slope failure in loess terrains during spring thawing vol.15, pp.4, 2018, https://doi.org/10.1007/s11629-017-4584-8
- Frost Heave of Irrigation Canals in Seasonal Frozen Regions vol.2019, pp.1687-8094, 2019, https://doi.org/10.1155/2019/2367635
- Consolidation deformation of Baghmisheh marls of Tabriz, Iran vol.12, pp.4, 2016, https://doi.org/10.12989/gae.2017.12.4.561
- Mechanical properties of expanded polystyrene beads stabilized lightweight soil vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.459
- Heat transfer and water migration in loess slopes during freeze-thaw cycling in Northern Shaanxi, China vol.16, pp.11, 2018, https://doi.org/10.1007/s40999-018-0298-8
- Stochastic analysis for uncertain deformation of foundations in permafrost regions vol.14, pp.6, 2018, https://doi.org/10.12989/gae.2018.14.6.589
- Experimental study on freezing point of saline soft clay after freeze-thaw cycling vol.15, pp.4, 2016, https://doi.org/10.12989/gae.2018.15.4.997
- Evaporation-Induced Water and Solute Coupled Transport in Saline Loess Columns in Closed and Open Systems vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/3781410
- Evolution of Soil Settlements under a Rockfill Dam Based on Potential Earthquake Harmfulness (PEH) 'Case of Boumerdes Earthquake, Algeria 2003' vol.42, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jera.42.109
- Shear Strength Behavior of Coarse-Grained Saline Soils after Freeze-Thaw vol.23, pp.6, 2016, https://doi.org/10.1007/s12205-019-0197-9
- Thaw consolidation behavior of frozen soft clay with calcium chloride vol.18, pp.2, 2016, https://doi.org/10.12989/gae.2019.18.2.189
- Predicting Triaxial Compressive Strength and Young’s Modulus of Frozen Sand Using Artificial Intelligence Methods vol.33, pp.3, 2019, https://doi.org/10.1061/(asce)cr.1943-5495.0000188
- Effect of freeze-thaw on freezing point and thermal conductivity of loess vol.13, pp.5, 2016, https://doi.org/10.1007/s12517-020-5186-2