References
- Atkinson, J.H. and Bransby, P.L. (1977), The Mechanics of Soils, An Introduction to Critical State Soil Mechanics, McGRAW-HILL, Maidenhead, Berkshire, England.
- Been, K. and Jefferies, M.G. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99
- Been, K. and Jefferies, M. (2004), "Stress-dilatancy in very loose sand", Can. Geotech. J., 41(5), 972-989. https://doi.org/10.1139/t04-038
- Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65
- Bopp, P.A. and Lade, P.V. (2005), "Relative density effects on undrained sand behavior at high pressures", Soils Found., 45(1), 15-26. https://doi.org/10.3208/sandf.45.15
- Consoli, N.C., Heineck, K.S., Coop, M.R., Fonseca, A.V.D. and Ferreira, C. (2007), "Coal bottom ash as a geomaterial: Influence of particle morphology on the behavior of granular materials", Soils Found., 47(2), 361-373. https://doi.org/10.3208/sandf.47.361
- Consoli, N.C., Rocha, C.G.D. and Saldanha, R.B. (2014), "Coal fly ash-carbide lime bricks: An environment friendly building product", Construct. Build. Mater., 69, 301-309. https://doi.org/10.1016/j.conbuildmat.2014.07.067
- Dash, S.K. (2010), "Influence of relative density of soil on performance of Geocell-reinforced Sand Foundation", J. Mater. Civ. Eng., 22(5), 533-538. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000040
- Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil. Mech. Found. Div., 96(5), 1629-1653.
- Gutierrez, M. (2003), "Modelling of the steady-state response of granular soils", Soils Found., 43(5), 95-105.
- Horiuchi, S., Taketsuka, M., Odawara, T. and Kawasaki, H. (1992), "Fly-Ash Slurry Island: Ι. Theoretical and experimental investigations", J. Mater. Civ. Eng., 4(2), 117-133. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:2(117)
- Horiuchi, S., Tamaoki, K. and Yasuhara, K. (1995), "Coal ash slurry for effective underwater disposal", Soils Found., 35(1), 1-10. https://doi.org/10.3208/sandf1972.35.1
- Jefferies, M.G. (1993), "Nor-Sand: A simple critical state model for sand", Geotechnique, 43(1), 91-103. https://doi.org/10.1680/geot.1993.43.1.91
- Kawasaki, H., Horiuchi, S., Akatsuka, M. and Sano, S. (1992), "Fly-Ash Slurry Island: ΙΙ. Construction in Hakucho Ohashi Project", J. Mater. Civ. Eng., 4(2), 134-152. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:2(134)
- Kim, Y.T., Lee, C. and Park, H.I. (2011), "Experimental Study on Engineering Characteristic of Composite Geomaterial for Recycling Dredged Soil and Bottom Ash", Mar. Georesour. Geotec., 29(1), 1-15. https://doi.org/10.1080/1064119X.2010.514237
- Kumar, S. (2003), "Fly ash-lime-phosphogypsum hollow blocks for walls and partitions", Build. Environ., 38(2), 291-295. https://doi.org/10.1016/S0360-1323(02)00068-9
- Lade, P.V. and Bopp, P.A. (2005), "Relative density effects on drained sand behavior at high pressures", Soils Found., 45(1), 1-13. https://doi.org/10.3208/sandf.45.1
- Lade, P.V., Yamamuro, J. and Bopp, P.A. (1996), "Significance of particle crushing in granular materials", J. Geotech. Engrg., 122(4), 309-316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309)
- Li, H.N., Yi, T.H., Gu, M. and Huo, L.S. (2009), "Evaluation of earthquake-induced structural damages by wavelet transform", Prog. Nat. Sci., 19(4), 461-470. https://doi.org/10.1016/j.pnsc.2008.09.002
- Mohamad, E.T., Latifi, N., Marto, A., Moradi, R. and Abad, S. (2013), "Effects of relative density on shear strength characteristics of sand-tie chips mixture", Electronic. J. Geotech. Eng., 18, 623-632.
- Nova, R. (1982), "A Constitutive Model for Soil under Monotonic and Cyclic Loading. Soil mechanicstransient and cyclic loads", John Wiley & Sons, New York, USA.
- Panich, V. and Pitthaya, J. (2014), "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomech. Eng., Int. J., 6(5), 437-453. https://doi.org/10.12989/gae.2014.6.5.437
- Pappu, A., Saxena, M. and Asolekar, S.R. (2007), "Solid wastes generation in India and their recycling potential in building materials", Build. Environ., 42(6), 2311-2320. https://doi.org/10.1016/j.buildenv.2006.04.015
- Park, L.K., Suneel, M. and Chul, I.J. (2008), "Shear strength of Jumunjin sand according to relative density", Mar. Georesour. Geotec., 26(2), 101-110. https://doi.org/10.1080/10641190802022445
- Roscoe, K.H. and Burland, J.B. (1968), "On the generalized stress-strain behaviour of wet clay", Eng. Plast., 535-609.
- Roscoe, K.H., Schofield, A.N. and Thurairajah, A. (1963), "Yielding of Clays in State Wetter than Critical", Geotechnique, 13(3), 211-240. https://doi.org/10.1680/geot.1963.13.3.211
- Salot, C., Gotteland, P. and Villard, P. (2009), "Influence of relative density on granular materials behavior: DEM simulations of triaxial tests", Granul. Matter., 11(4), 221-236. https://doi.org/10.1007/s10035-009-0138-2
- Shang, H.S., Yi, T.H. and Yang, L.S. (2012), "Experimental study on the compressive strength of big mobility concrete with nondestructive testing method", Adv. Mater. Sci. Eng., ID 345214.
- Taylor, D.W. (1948), Fundamentals of Soil Mechanics, John Wiley, New York, NY, USA.
- Tiwari, A. and Shukla, S.K. (2014), Advanced Carbon Materials and Technology, John Wiley and Sons, Inc., Hoboken, NJ, USA.
- Trivedi, A. and Sud, V.K. (2002), "Grain characteristics and engineering properties of coal ash", Granul. Matter., 4(3), 93-101. https://doi.org/10.1007/s10035-002-0114-6
- Villamizar, M.C.N., Araque, V.S., Reyes, C.A.R. and Silva, R.S. (2012), "Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks", Constr. Build. Mater., 36, 276-286. https://doi.org/10.1016/j.conbuildmat.2012.04.056
- Wan, R.G. and Guo, P.J. (1998), "A simple constitutive model for granular soils: modified stress-dilatancy approach", Comput. Geotech., 22(2), 109-133. https://doi.org/10.1016/S0266-352X(98)00004-4
- Winter, M., Ohara, N., Hyodo, M., Nakata, Y., Yoshimoto, N., Yoshioka, I. and Nakashita, A. (2013), "Effect of particle strength on the monotonic shear strength of clinker ash", Geo. Lett., 3(3), 112-118.
- Wu, Y. and Yamamoto, H. (2015), "Numerical Investigation on the Reference Crushing Stress of Granular Materials in Triaxial Compression Test", Period. Polytech. Civil Eng., 59(4), 465-474. https://doi.org/10.3311/PPci.7694
- Wu, Y., Yamamoto, H., Yao, Y.P. (2013), "Numerical study on bearing behavior of pile considering sand particle crushing", Geomech. Eng., Int. J., 5(3), 241-261. https://doi.org/10.12989/gae.2013.5.3.241
- Wu, Y., Yoshimoto, N., Hyodo, M. and Nakata, Y. (2014), "Evaluation of crushing stress at critical state of granulated coal ash in triaxial test", Geo. Lett., 4(4), 337-342.
- Yi, T.H., Li, H.N. and Zhao, X.Y. (2012), "Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique", Sensors, 12(8), 11205-11220. https://doi.org/10.3390/s120811205
- Yoshimoto, N., Hyodo, M., Nakata, Y., Murata, H., Hongo, T. and Ohnaka, A. (2005), "Particle characteristics of granulated coal ash as geomaterial", J. Soc. Mater. Sci., 54(11), 1111-1116. [In Japanese] https://doi.org/10.2472/jsms.54.1111
- Yoshimoto, N., Hyodo, M., Nakata, Y. and Orense, R.P. (2007), "An examination of the utilization of granulated coal as geomaterial based on particle strength", Tsuchi to Kiso, 55(10), 23-25. [In Japanese]
- Yoshimoto, N., Hyodo, M., Nakata, Y., Orense, R.P., Hongo, T. and Ohnaka, A. (2012), "Evaluation of shear strength and mechanical properties of granulated coal ash based on single particle strength", Soils Found., 52(2), 321-334. https://doi.org/10.1016/j.sandf.2012.02.009
- Yoshimoto, N., Orense, R.P., Hyodo, M. and Nakata, Y. (2014), "Dynamic behavior of Granulated coal ash during earthquake", J. Geotech. Geoenviron., 140(2), 04013002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000986
- Zhuang, L., Nakata, Y., Kim, U.G. and Kim, D. (2014), "Influence of relative density, particle shape, and stress path on the plane strain compression behavior of granular materials", Acta. Geotech., 9(2), 241-255. https://doi.org/10.1007/s11440-013-0253-4
Cited by
- Influences of particle characteristic and compaction degree on the shear response of clinker ash vol.230, 2017, https://doi.org/10.1016/j.enggeo.2017.09.019
- The Shear Strength of the Nature Loess Joint: A Case Study in Shaanxi Province vol.47, pp.3, 2018, https://doi.org/10.1520/JTE20170759
- Determination of active failure surface geometry for cohesionless backfills vol.12, pp.6, 2017, https://doi.org/10.12989/gae.2017.12.6.983
- Experimental study on crushable coarse granular materials during monotonic simple shear tests vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.687
- Prediction models of the shear modulus of normal or frozen soil-rock mixtures vol.15, pp.2, 2016, https://doi.org/10.12989/gae.2018.15.2.783
- 3D stress-fractional plasticity model for granular soil vol.17, pp.4, 2016, https://doi.org/10.12989/gae.2019.17.4.385
- Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads vol.19, pp.3, 2019, https://doi.org/10.12989/gae.2019.19.3.241
- Factors affecting particle breakage of calcareous soil retrieved from South China Sea vol.22, pp.2, 2016, https://doi.org/10.12989/gae.2020.22.2.173
- Mechanical properties of calcareous silts in a hydraulic fill island-reef vol.39, pp.1, 2016, https://doi.org/10.1080/1064119x.2020.1748775
- Correlation of Critical State Strength Properties with Particle Shape and Surface Fractal Dimension of Clinker Ash vol.21, pp.6, 2016, https://doi.org/10.1061/(asce)gm.1943-5622.0002027
- Assessment of crack stress thresholds and development of a pre-failure indicator using Digital Image Correlation approach for coal specimen vol.7, pp.4, 2016, https://doi.org/10.1007/s40948-021-00300-2