참고문헌
- Akgoz, B. and Civalek, O. (2013), "Modeling and analysis of micr o-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48, 863-873. https://doi.org/10.1007/s11012-012-9639-x
- Bhattacharya, S.N. (1970), "Exact solution of SH-wave equation for inhomogeneous media", Bull. Seismol. Soc. A., 60(6), 1847-1859.
- Borcherdt, R.D. (2009), Viscoelastic Waves in Layered Media, Cambridge University Press, New York.
- Chakraborty, M. (1985), "Reflection and transmission of SH waves from an inhomogeneous half space", Proc. Indian Natn. Sci. Acad., 51(4), 716-723.
- Chattopadhyay, A., Gupta, S., Singh, A.K. and Sahu, S.A. (2010), "Propagation of SH waves in an irregular non homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium", Appl. Math. Sci., 4(44), 2157-2170.
- Chaudhary, S., Kaushik, V.P. and Tomar, S.K. (2010), "Transmission of plane SH-waves through a monoclinic layer embedded between two different self-reinforced elastic solid half spaces", Int. J. Appl. Math. Mech., 6(19), 22-43.
- Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84, 323-341. https://doi.org/10.1007/s00419-013-0802-1
- Cosserat, E. and Cosserat, F. (1909), "Theorie des corps deformables (Theory of Deformable Bodies)", A. Hermann et Fils, Paris.
- Das, T.K., Sengupta, P.R. and Debnath, L. (1991), "Thermo-visco-elastic Rayleigh waves under the influence of couple stress and gravity", Int. J. Math. Math. Sci., 14(3), 553-560. https://doi.org/10.1155/S0161171291000753
- Eringen, A.C. (1968), Theory of Micropolar Elasticity, Ed. Liebowitz, H., Fracture, Vol. 2, Academic Press, New York.
- Georgiadis, H.G. and Velgaki, E.G. (2003), "High-frequency Rayleigh waves in materials with microstructure and couple-stress effects", Int. J. Solid. Struct., 40, 2501-2520. https://doi.org/10.1016/S0020-7683(03)00054-4
- Gubbins, D. (1990), Seismology and Plate Tectonics, Cambridge University Press, Cambridge.
- Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48, 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
- Kakar, R. (2015), "SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space", Earthq. Struct., 9(2), 305-320. https://doi.org/10.12989/eas.2015.9.2.305
- Kaushik, V.P. and Chopra, S.D. (1984), "Transmission and reflection of inhomogeneous plane SH- waves at an interface between two horizontally and vertically heterogeneous viscoelastic solids", Proc. Indian Natn. Sci. Acad,, 50(4), 291-311.
- Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Proc. Ned. Akad. Wet B, 67, 17-44.
- Lakes, R.S. (1991), "Experimental micro mechanics methods for conventional and negative poisson's ratio cellular solids as cosserat continua", J. Eng. Mater. Tech., 113, 148-155. https://doi.org/10.1115/1.2903371
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-488. https://doi.org/10.1007/BF00253946
- Nowacki, W. (1974), Micropolar Elasticity, International Center for Mechanical Sciences, Courses and Lectures No. 151, Udine, Springer-Verlag, Wien-New York.
- Ottosen, N.S., Ristinmaa, M. and Ljung, C. (2000), "Rayleigh waves by the indeterminate couple-stress theory", Eur. J. Mech. A/Solid., 19, 929-947. https://doi.org/10.1016/S0997-7538(00)00201-1
- Ravindra, R. (1968), "Usual assumptions in the treatment of wave propagation in heterogeneous elastic media", Pure Appl. Geophys., 70(1), 12-17. https://doi.org/10.1007/BF00875135
- Sahu, S.A., Saroj, P.K. and Dewangan, N. (2014), "SH-waves in viscoelastic heterogeneous layer over halfspace with self-weight", Arch. Appl. Mech., 84, 235-245. https://doi.org/10.1007/s00419-013-0796-8
- Schoenberg, M. (1971), "Transmission and reflection of plane waves at an elastic-viscoelastic interface", Geophys. J. Int., 25, 35-47. https://doi.org/10.1111/j.1365-246X.1971.tb02329.x
- Sengupta, P.R. and Ghosh, B. (1974), "Effects of couple stresses on the propagation of waves in an elastic layer", Pure Appl. Geophy., 112, 331-338. https://doi.org/10.1007/BF00876144
- Toupin , R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11, 385-414. https://doi.org/10.1007/BF00253945
- Vardoulakis, I. and Georgiadis, H.G. (1997), "SH surface waves in a homogeneous gradient-elastic halfspace with surface energy", J. Elast., 47, 147-165. https://doi.org/10.1023/A:1007433510623
- Voigt, W. (1887), "Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals)", Abh Gesch Wissenschaften 34.
- Yang, P.S., Liu, S.W. and Sung, J.C. (2008), "Transient response of SH waves in a layered half-space with sub-surface and interface cracks", Appl. Math Model., 32, 595-609. https://doi.org/10.1016/j.apm.2007.01.006
피인용 문헌
- Moving load response on the stresses produced in an irregular microstretch substrate vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.175
- Torsional waves in fluid saturated porous layer clamped between two anisotropic media vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.645
- Scattering of torsional surface waves in a three layered model structure vol.68, pp.4, 2018, https://doi.org/10.12989/sem.2018.68.4.443
- Quantifying viscoelastic, piezoelectric and couple stress effects on Love-type wave propagation vol.28, pp.10, 2016, https://doi.org/10.1088/1361-665x/ab39bf
- Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating vol.73, pp.6, 2016, https://doi.org/10.12989/sem.2020.73.6.621
- Love waves in a layer with void pores over a microstructural couple stress substrate with corrugated boundary surfaces vol.42, pp.4, 2016, https://doi.org/10.1007/s40430-020-2262-1
- Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse vol.75, pp.2, 2016, https://doi.org/10.12989/sem.2020.75.2.133