DOI QR코드

DOI QR Code

Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate

  • Sharma, Vikas (Department of Mathematics, Lovely Professional University) ;
  • Kumar, Satish (School of Mathematics, Thapar University)
  • Received : 2015.03.25
  • Accepted : 2016.01.15
  • Published : 2016.02.25

Abstract

In this paper, we have investigated shear horizontal wave propagation in a layered structure, consisting of granular macromorphic rock (Dionysos Marble) substrate underlying a viscoelastic layer of finite thickness. SH waves characteristics are affected by the material properties of both substrate and the coating. The effects of microstructural parameter "characteristic length" of the substrate, along with heterogeneity, internal friction and thickness of viscoelastic layer are studied on the dispersion curves. Dispersion equation for SH wave is derived. Real and damping phase velocities of SH waves are studied against dimensionless wave number, for different combinations of various parameters involved in the problem.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2013), "Modeling and analysis of micr o-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48, 863-873. https://doi.org/10.1007/s11012-012-9639-x
  2. Bhattacharya, S.N. (1970), "Exact solution of SH-wave equation for inhomogeneous media", Bull. Seismol. Soc. A., 60(6), 1847-1859.
  3. Borcherdt, R.D. (2009), Viscoelastic Waves in Layered Media, Cambridge University Press, New York.
  4. Chakraborty, M. (1985), "Reflection and transmission of SH waves from an inhomogeneous half space", Proc. Indian Natn. Sci. Acad., 51(4), 716-723.
  5. Chattopadhyay, A., Gupta, S., Singh, A.K. and Sahu, S.A. (2010), "Propagation of SH waves in an irregular non homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium", Appl. Math. Sci., 4(44), 2157-2170.
  6. Chaudhary, S., Kaushik, V.P. and Tomar, S.K. (2010), "Transmission of plane SH-waves through a monoclinic layer embedded between two different self-reinforced elastic solid half spaces", Int. J. Appl. Math. Mech., 6(19), 22-43.
  7. Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84, 323-341. https://doi.org/10.1007/s00419-013-0802-1
  8. Cosserat, E. and Cosserat, F. (1909), "Theorie des corps deformables (Theory of Deformable Bodies)", A. Hermann et Fils, Paris.
  9. Das, T.K., Sengupta, P.R. and Debnath, L. (1991), "Thermo-visco-elastic Rayleigh waves under the influence of couple stress and gravity", Int. J. Math. Math. Sci., 14(3), 553-560. https://doi.org/10.1155/S0161171291000753
  10. Eringen, A.C. (1968), Theory of Micropolar Elasticity, Ed. Liebowitz, H., Fracture, Vol. 2, Academic Press, New York.
  11. Georgiadis, H.G. and Velgaki, E.G. (2003), "High-frequency Rayleigh waves in materials with microstructure and couple-stress effects", Int. J. Solid. Struct., 40, 2501-2520. https://doi.org/10.1016/S0020-7683(03)00054-4
  12. Gubbins, D. (1990), Seismology and Plate Tectonics, Cambridge University Press, Cambridge.
  13. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48, 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
  14. Kakar, R. (2015), "SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space", Earthq. Struct., 9(2), 305-320. https://doi.org/10.12989/eas.2015.9.2.305
  15. Kaushik, V.P. and Chopra, S.D. (1984), "Transmission and reflection of inhomogeneous plane SH- waves at an interface between two horizontally and vertically heterogeneous viscoelastic solids", Proc. Indian Natn. Sci. Acad,, 50(4), 291-311.
  16. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Proc. Ned. Akad. Wet B, 67, 17-44.
  17. Lakes, R.S. (1991), "Experimental micro mechanics methods for conventional and negative poisson's ratio cellular solids as cosserat continua", J. Eng. Mater. Tech., 113, 148-155. https://doi.org/10.1115/1.2903371
  18. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-488. https://doi.org/10.1007/BF00253946
  19. Nowacki, W. (1974), Micropolar Elasticity, International Center for Mechanical Sciences, Courses and Lectures No. 151, Udine, Springer-Verlag, Wien-New York.
  20. Ottosen, N.S., Ristinmaa, M. and Ljung, C. (2000), "Rayleigh waves by the indeterminate couple-stress theory", Eur. J. Mech. A/Solid., 19, 929-947. https://doi.org/10.1016/S0997-7538(00)00201-1
  21. Ravindra, R. (1968), "Usual assumptions in the treatment of wave propagation in heterogeneous elastic media", Pure Appl. Geophys., 70(1), 12-17. https://doi.org/10.1007/BF00875135
  22. Sahu, S.A., Saroj, P.K. and Dewangan, N. (2014), "SH-waves in viscoelastic heterogeneous layer over halfspace with self-weight", Arch. Appl. Mech., 84, 235-245. https://doi.org/10.1007/s00419-013-0796-8
  23. Schoenberg, M. (1971), "Transmission and reflection of plane waves at an elastic-viscoelastic interface", Geophys. J. Int., 25, 35-47. https://doi.org/10.1111/j.1365-246X.1971.tb02329.x
  24. Sengupta, P.R. and Ghosh, B. (1974), "Effects of couple stresses on the propagation of waves in an elastic layer", Pure Appl. Geophy., 112, 331-338. https://doi.org/10.1007/BF00876144
  25. Toupin , R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11, 385-414. https://doi.org/10.1007/BF00253945
  26. Vardoulakis, I. and Georgiadis, H.G. (1997), "SH surface waves in a homogeneous gradient-elastic halfspace with surface energy", J. Elast., 47, 147-165. https://doi.org/10.1023/A:1007433510623
  27. Voigt, W. (1887), "Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals)", Abh Gesch Wissenschaften 34.
  28. Yang, P.S., Liu, S.W. and Sung, J.C. (2008), "Transient response of SH waves in a layered half-space with sub-surface and interface cracks", Appl. Math Model., 32, 595-609. https://doi.org/10.1016/j.apm.2007.01.006

Cited by

  1. Moving load response on the stresses produced in an irregular microstretch substrate vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.175
  2. Torsional waves in fluid saturated porous layer clamped between two anisotropic media vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.645
  3. Scattering of torsional surface waves in a three layered model structure vol.68, pp.4, 2018, https://doi.org/10.12989/sem.2018.68.4.443
  4. Quantifying viscoelastic, piezoelectric and couple stress effects on Love-type wave propagation vol.28, pp.10, 2016, https://doi.org/10.1088/1361-665x/ab39bf
  5. Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating vol.73, pp.6, 2016, https://doi.org/10.12989/sem.2020.73.6.621
  6. Love waves in a layer with void pores over a microstructural couple stress substrate with corrugated boundary surfaces vol.42, pp.4, 2016, https://doi.org/10.1007/s40430-020-2262-1
  7. Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse vol.75, pp.2, 2016, https://doi.org/10.12989/sem.2020.75.2.133