References
- ACI318-05 (2005), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- ACI318-14 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- Aguilar, G., Matamoros, A.B., Parra-Montesinos, G., Ramirez, J.A. and Wight, J.K. (2002), "Experimental evaluation of design procedures for shear strength of deep reinforced concrete beams", ACI Struct. J., 99(4), 539-548.
- Akbas, B. (2006), "A neural network model to assess the hysteretic energy demand in steel moment resisting frames", Struct. Eng. Mech., 23(2), 177-193. https://doi.org/10.12989/sem.2006.23.2.177
- Anderson, N.S. and Ramirez, J.A. (1989), "Detailing of stirrup reinforcement", ACI Struct. J., 86(5), 507-515.
- Arslan, M.H., Ceylan, M., Kaltakci, M.Y., Ozbay, Y. and Gulay, G. (2007), "Prediction of force reduction factor R of prefabricated industrial buildings using neural networks", Struct. Eng. Mech., 27(2), 117-134. https://doi.org/10.12989/sem.2007.27.2.117
- Arslan M.H. (2009), "Application of ANN to evaluate effective parameters affecting failure load and displacement of RC buildings", Nat Hazard. Earth. Syst. Sci., 9, 967-977. https://doi.org/10.5194/nhess-9-967-2009
- Arslan, M.H. (2010), "An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks", Eng. Struct., 32, 1888-1898. https://doi.org/10.1016/j.engstruct.2010.03.010
- Chen, H.M., Tsai, K.H., Qi, G.Z., Yang, J.C.S. and Amini, F. (1995), "Neural networks for structural control", J. Comput. Civil Eng., 9(2), 168-176. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:2(168)
- Chetchotisak, P., Teerawong, J., Yindeesuk, S. and Song, J. (2014), "New strut-and-tie models for shear strength prediction and design of RC deep beams", Comput. Concrete, 14(1), 19-40. https://doi.org/10.12989/cac.2014.14.1.019
- Clark, A.P. (1951), "Diagonal tension in reinforced concrete beams", ACI J., 48(10), 145-156.
- CSA A23.3-04 (2004), Design of Concrete Structures, Canadian Standards Association, Canada.
- Elcordy, M.F., Chang, K.C. and Lee, G.C. (1993), "Neural networks trained by analytically simulated damage states", J. Comput. Civil Eng., 7(2), 130-145. https://doi.org/10.1061/(ASCE)0887-3801(1993)7:2(130)
- Eun, H.C., Lee, Y.H., Chung, H.S. and Yang, K.H. (2006), "On the shear strength of reinforced concrete deep beam with web opening", Struct. Des. Tall Spec. Build., 15, 445-466. https://doi.org/10.1002/tal.306
- Eurocode 2 (2004), Design of concrete structures, European Committee for Standardization.
- Fu, L. (1994), Neural Networks in Computer Intelligence, McGraw-Hill: USA.
- Inel, M. (2007), "Modeling ultimate deformation capacity of RC columns using artificial neural networks", Eng. Struct., 29(3), 329-335. https://doi.org/10.1016/j.engstruct.2006.05.001
- Kong, F.K., Robins, P.J. and Cole, D.F. (1970), "Web reinforcement effects on deep beams", ACI J., 67(12), 1010-1017.
- Lautour, O.R. and Omenzetter, P. (2009), "Prediction of seismic-induced structural damage using artificial neural networks", Eng. Struct., 31, 600-606. https://doi.org/10.1016/j.engstruct.2008.11.010
- MacGregor, J.G. (1997), Reinforced Concrete Mechanics and Design, 3rd Edition, Prentice-Hall International Inc., New Jersey.
- MATLAB (2006), Neural Network Toolbox User Guide, Matrix Laboratory.
- Mohammadhassani, M., Saleh A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
- Oh, J.K. and Shin, S.W. (2001), "Shear strength of reinforced high-strength concrete deep beams", ACI Struct. J., 98(2), 164-173.
- Ozturk, M. (2012), "Prediction of tensile capacity of adhesive anchors including edge and group effects using neural networks", Sci. Eng. Compos. Mater., 20(1), 95-104.
- Park, J.W. and Kuchma, D. (2007), "Strut-and-tie model analysis for strength prediction of deep beams", ACI Struct. J., 104(6), 657-666.
- Quintero-Febres, C.G., Parra-Montesinos, G. and Wight, J.K. (2006), "Strength of struts in deep concrete members designed using strut-and-tie method", ACI Struct. J., 103(4), 577-586.
- Schlaich, J., Schafer, K. and Jennewein, M. (1987), "Toward a consistent design of structural concrete", PCI J., 32(3), 74-150. https://doi.org/10.15554/pcij.05011987.74.150
- Smith, K.N. and Vantsiotis, A.S. (1982), "Shear strength of deep beams", ACI J., 79(3), 201-213.
- Tan, K.H., Kong, F.K., Teng, S. and Guan, L. (1995), "High-strength concrete deep beams with effective span and shear span variations", ACI Struct. J., 92(4), 395-405.
- Williams, D.E., Rumelhart, G.E., Hinton, R.J. and Hinton, G. (1986), "Learning representations by backpropagating errors", Nature, 323, 533-536. https://doi.org/10.1038/323533a0
- Yang, K.H., Ashour, A., Song, J.K. and Lee, E.T. (2008), "Neural network modelling of RC deep beam shear strength", Proc. Inst. Civil Eng. Struct. Build., 161(SB1), 29-39. https://doi.org/10.1680/stbu.2008.161.1.29
- Yavuz, G., Arslan, M.H. and Baykan, O.K. (2014), "Shear strength predicting of FRP-strengthened RC beams by using artificial neural networks", Sci. Eng. Compos. Mater., 21(2), 239-255.
Cited by
- Metamodel-based design optimization of structural one-way slabs based on deep learning neural networks to reduce environmental impact vol.155, 2018, https://doi.org/10.1016/j.engstruct.2017.11.005
- Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings vol.1, pp.4, 2016, https://doi.org/10.12989/mmm.2016.1.4.285
- Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept vol.61, pp.1, 2016, https://doi.org/10.12989/sem.2017.61.1.015
- Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings vol.6, pp.1, 2016, https://doi.org/10.12989/csm.2017.6.1.055
- Reinforcement detailing of a corbel via an integrated strut-and-tie modeling approach vol.19, pp.5, 2016, https://doi.org/10.12989/cac.2017.19.5.589
- Interactive strut-and-tie-model for shear strength prediction of RC pile caps vol.20, pp.3, 2016, https://doi.org/10.12989/cac.2017.20.3.329
- Determining the shear strength of FRP-RC beams using soft computing and code methods vol.23, pp.1, 2016, https://doi.org/10.12989/cac.2019.23.1.049
- Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks vol.24, pp.5, 2019, https://doi.org/10.12989/cac.2019.24.5.469
- Shear mechanism of steel fiber reinforced concrete deep coupling beams vol.73, pp.2, 2016, https://doi.org/10.12989/sem.2020.73.2.143
- A stress field approach for the shear capacity of RC beams with stirrups vol.73, pp.5, 2016, https://doi.org/10.12989/sem.2020.73.5.515
- Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM vol.75, pp.5, 2020, https://doi.org/10.12989/sem.2020.75.5.633