References
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Beena, K. and Parvathy, U. (2014), "Linear static analysis of functionally graded plate using spline finite strip method", Compos. Struct., 117, 309-315. https://doi.org/10.1016/j.compstruct.2014.07.002
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
- Erdogan, F., Kaya, A. C. and Joseph, P. F. (1991), "The crack problem in bonded nonhomogeneous materials", J. Appl. Mech., 58(2), 410-418. https://doi.org/10.1115/1.2897201
- Fares, M. (1999), "Non-linear bending analysis of composite laminated plates using a refined first-order theory", Compos. Struct., 46(3), 257-266. https://doi.org/10.1016/S0263-8223(99)00062-8
- Fares, M. and Zenkour, A. (1999), "Buckling and free vibration of non-homogeneous composite cross-ply laminated plates with various plate theories", Compos. Struct., 44(4), 279-287. https://doi.org/10.1016/S0263-8223(98)00135-4
- Goswami, S. (2006), "A C0 plate bending element with refined shear deformation theory for composite structures", Compos. Struct., 72(3), 375-382. https://doi.org/10.1016/j.compstruct.2005.01.007
- Gupta, U., Lal, R. and Sharma, S. (2006), "Vibration analysis of non-homogeneous circular plate of nonlinear thickness variation by differential quadrature method", J. Sound Vib., 298(4), 892-906. https://doi.org/10.1016/j.jsv.2006.05.030
- Hashin, Z. and Shtrikman, S. (1962), "On some variational principles in anisotropic and nonhomogeneous elasticity", J. Mech. Phys. Solid., 10(4), 335-342. https://doi.org/10.1016/0022-5096(62)90004-2
- He, W.M., Chen, W.Q. and Qiao, H. (2013), "In-plane vibration of rectangular plates with periodic inhomogeneity: natural frequencies and their adjustment", Compos. Struct., 105, 134-140. https://doi.org/10.1016/j.compstruct.2013.05.013
- He, W.M., Qiao, H. and Chen, W.Q. (2012), "Analytical solutions of heterogeneous rectangular plates with transverse small periodicity", Compos. Part B: Eng., 43(3), 1056-1062. https://doi.org/10.1016/j.compositesb.2011.09.010
- Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
- Khoroshun, L., Kozlov, S., Ivanov, Y.A. and Koshevoi, I. (1988), The Generalized Theory of Plates and Shells Non-Homogeneous in Thickness Direction.
- Kolpakov, A. (1999), "Variational principles for stiffnesses of a non-homogeneous plate", J. Mech. Phys. Solid., 47(10), 2075-2092. https://doi.org/10.1016/S0022-5096(99)00010-1
- Lal, R. (2007), "Transverse vibrations of non-homogeneous orthotropic rectangular plates of variable thickness: a spline technique", J. Sound Vib., 306(1), 203-214. https://doi.org/10.1016/j.jsv.2007.05.014
- Leknitskii, S.G. and Fern, P. (1963), Theory of Elasticity of an Anisotropic Elastic Body, Holden-Day.
- Lomakin, V. (1976), The Elasticity Theory of Non-Homogeneous Materials, Nauka, Moscow.
- Pagano, N. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102
- Pagano, N. and Hatfield, H.J. (1972), "Elastic behavior of multilayered bidirectional composites", AIAA J., 10(7), 931-933. https://doi.org/10.2514/3.50249
- Patel, S.N. (2014), "Nonlinear bending analysis of laminated composite stiffened plates", Steel Compos. Struct., 17(6), 867-890. https://doi.org/10.12989/scs.2014.17.6.867
- Phan, N. and Reddy, J. (1985), "Analysis of laminated composite plates using a higher order shear deformation theory", Int. J. Numer. Meth. Eng., 21(12), 2201-2219. https://doi.org/10.1002/nme.1620211207
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J. N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
- Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solid. Struct., 11(5), 569-573. https://doi.org/10.1016/0020-7683(75)90030-X
- Sadoune, M., Tounsi, A., Houari, M.S.A. and Bedia, E.L.A.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321
- Schmitz, A. and Horst, P. (2014), "A finite element unit-cell method for homogenised mechanical properties of heterogeneous plates", Compos. Part A: Appl. Sci. Manuf., 61, 23-32. https://doi.org/10.1016/j.compositesa.2014.01.014
- Sofiyev, A. and Kuruoglu, N. (2014), "Combined influences of shear deformation, rotary inertia and heterogeneity on the frequencies of cross-ply laminated orthotropic cylindrical shells", Compos. Part B: Eng., 66, 500-510. https://doi.org/10.1016/j.compositesb.2014.06.015
- Sofiyev, A., Zerin, Z. and Korkmaz, A. (2008), "The stability of a thin three-layered composite truncated conical shell containing an fgm layer subjected to non-uniform lateral pressure", Compos. Struct., 85(2), 105-115. https://doi.org/10.1016/j.compstruct.2007.10.022
- Sturzenbecher, R. and Hofstetter, K. (2011), "Bending of cross-ply laminated composites: an accurate and efficient plate theory based upon models of Lekhnitskii and Ren", Compos. Struct., 93(3), 1078-1088. https://doi.org/10.1016/j.compstruct.2010.09.020
- Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for laminated composite plates", Compos. Struct., 106, 754-763. https://doi.org/10.1016/j.compstruct.2013.06.013
- Thai, H.T. and Choi, D.H. (2013b), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
- Yin, S., Hale, J.S., Yu, T., Bui, T.Q. and Bordas, S.P. (2014), "Sogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates", Compos. Struct., 118, 121-138. https://doi.org/10.1016/j.compstruct.2014.07.028
- Zenkour, A. and Fares, M. (1999), "Non-homogeneous response of cross-ply laminated elastic plates using a higher-order theory", Compos. Struct., 44(4), 297-305. https://doi.org/10.1016/S0263-8223(99)00006-9
Cited by
- Curvilinear free-edge form effect on stability of perforated laminated composite plates vol.61, pp.2, 2016, https://doi.org/10.12989/sem.2017.61.2.255