DOI QR코드

DOI QR Code

Permanent Ground Deformation Effects on Underground Wastewater Pipeline Performance

영구지반변형이 매설된 하수도관로 성능에 미치는 영향

  • Jeon, Sang-Soo (Department of Civil & Environmental Engineering, Inje University)
  • 전상수 (인제대학교 건설환경공학부)
  • Received : 2015.09.15
  • Accepted : 2016.01.05
  • Published : 2016.01.31

Abstract

In recent years, the earthquake sequence in Christchurch, New Zealand (NZ) was unprecedented in terms of repeated earthquake shocks with substantial levels of ground motion affecting modern infrastructure, and in particular, broad and precise reports for liquefaction-induced permanent ground deformation (PGD) and repairs of wastewater (WW) pipelines were collected. In this study, a geographical information system (GIS) and linear regression analysis were performed using data for the length and repair points of earthenware (EW) and concrete (CONC) wastewater pipelines acquired after the MW 6.2 February 22, 2011 earthquake. The repair rates (repairs/km) for the EW and CONC wastewater pipelines were evaluated inside the areas of PGD, and both angular distortion of ground and lateral ground strain were calculated from the high resolution LiDAR data acquired before and after the seismic event. The research results showed that both pipelines have similar trends of damage but the CONC wastewater pipeline with higher stiffness showed less damage. The results of linear regression analyses can be used to predict the repair rates for EW and CONC wastewater pipelines inside the areas of PGD induced by future earthquakes.

최근 주요 사회기반시설물로 이루어진 뉴질랜드 Christchurch 지역에 상당히 큰 지반운동을 유발하고 짧은 기간에 연속적으로 발생한 지진충격의 전례 없는 사례가 발생하였으며 특히 액상화 지역에서 발생된 영구지반변형과 하수도관 손상에 관한 방대하고 정확한 자료가 수집되었다. 본 연구에서는 이 지역의 2011년 2월 22일 지진규모($M_w$) 6.2 지진발생 후 얻어진 하수도관 길이 및 손상갯수와 영구지반변형지역에서 지진발생 전후에 얻어진 높은 해상도의 라이다데이터로부터 계산된 지반 각변형과 횡방향 지반변형률의 자료를 바탕으로 지리정보체계(GIS) 모델링과 선형회귀분석을 수행하여 도기와 콘크리트 하수도관의 손상율(손상갯수/1km)을 산정하였다. 연구 결과 두 매설관 모두 지반 각변형과 횡방향 지반변형률에 따라 유사한 경향으로 손상됨을 알 수 있으며 강성이 더 큰 콘크리트 하수도관의 손상이 더 작게 나타남을 알 수 있으며 이러한 선형회귀분석 결과는 추후 지진 시 발생할 수 있는 영구지반변형으로 인한 도기와 콘크리트 하수도관 손상율 예측에 유용하게 사용될 수 있다.

Keywords

References

  1. T.D. O'Rourke, S.-S. Jeon, S. Toprak, M. Cubrinovsk, J.K. Jung, "Underground Lifeline System Performance during Canterbury Earthquake Sequence", Proc. of the 15th World Conference on Earthquake Engineering, pp. 1-24, 2012.
  2. T.D. O'Rourke, S.-S. Jeon, S. Toprak, M. Cubrinovski, M. Huges, D.M. van Ballegooy, D. Bouziou, "Earthquake Response of Underground Pipeline Networks in Christchurch, NZ", Earthquake Spectra, Vol. 30, No. 1, pp. 183-204, 2014. DOI: http://dx.doi.org/10.1193/030413EQS062M
  3. GNS Science. The Canterbury earthquake sequence and implications for seismic design levels. GNS Science Consultancy Report 2011/183, commissioned by the Canterbury Earthquakes Royal Commission. 92 p., 2011.
  4. Tonkin and Taylor. Personal communications with Tonkin and Taylor staff about LiDAR and observed liquefaction databases, 2012.
  5. S.-S. Jeon, "Permanent Ground Deformation induced by Christchurch Earthquake and Estimation of Underground Water Pipeline Performance in New Zealand", Journal of the Korea Academia-Industrial cooperation Society, Vol. 16, No. 6, pp. 4201-4207, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.6.4201
  6. C.H., Trautmann, T.D. O'Rourke, M.D. Grigoriu, M.M. Khater, Systems Model for wastewater Supply Following Earthquakes, Lifeline Seismic Risk Analysis-Case Studies, Eguchi, R.Ed., ASCE, pp. 30-50, 1986.
  7. Canterbury Earthquake Recovery Authority [CERA] Geotechnical database for Canterbury earthquake sequence. [cited Jan. 17, 2012] Available from https://canterburygeotechnicaldatabase.projectorbit.com (accessed Feb. 15, 2012)
  8. M.D. Boscardin, E.J. Cording. "Building response to excavation-induced settlement", Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 1, pp. 1-21, 1989. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1)
  9. G.W. Clough, T.D. O'Rourke, "Construction induced movements of in-situ walls", Proc. of Specialty Conference on Design and Performance of Earth Retaining Structures, ASCE, pp. 439-470., 1990.
  10. B.K.P. Horn, "Hill shading and the reflectance map", Proc. of the IEEE, Vol. 69, No. 1, pp. 14-47, 1981. DOI: http://dx.doi.org/10.1109/PROC.1981.11918
  11. P.A. Burrough,, R.A. McDonnell, Principles of geographical information systems. Oxford University Press, Oxford, U.K., 333 p., 1998.
  12. Cook, R.D. Finite Element Modeling for Stress Analysis, John Wiley and Sons. 1995.