DOI QR코드

DOI QR Code

A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm

  • 투고 : 2015.02.13
  • 심사 : 2016.01.11
  • 발행 : 2016.02.25

초록

A two-stage method for damage detection in truss systems is proposed. In the first stage, a modal residual vector based indicator (MRVBI) is introduced to locate the potentially damaged elements and reduce the damage variables of a truss structure. Then, in the second stage, a differential evolution (DE) based optimization method is implemented to find the actual site and extent of damage in the structure. In order to assess the efficiency of the proposed damage detection method, two numerical examples including a 2D-truss and 3D-truss are considered. Simulation results reveal the high performance of the method for accurately identifying the damage location and severity of trusses with considering the measurement noise.

키워드

참고문헌

  1. Au, F.T.K., Cheng, Y.S., Tham, L.G. and Bai, Z.Z. (2003), "Structural damage detection based on a micro-genetic algorithm using incomplete and noisy modal data", J. Sound Vib., 259(5), 1081-1094. https://doi.org/10.1006/jsvi.2002.5116
  2. Bakhtiari-Nejad, F., Rahai, A. and Esfandiari, A. (2005), "A structural damage detection method using static noisy data", Eng. Struct., 27(12), 1784-1793. https://doi.org/10.1016/j.engstruct.2005.04.019
  3. Begambre, O. and Laier, J.E. (2009), "A hybrid Particle Swarm Optimization-Simplex algorithm (PSOS) for structural damage identification", Adv. Eng. Softw., 40(9), 883-891. https://doi.org/10.1016/j.advengsoft.2009.01.004
  4. Fallahian, S. and Seyedpoor, S.M. (2010), "A two stage method for structural damage identification using an adaptive neuro-fuzzy inference system and particle swarm optimization", Asian J. Civil Eng., 11(6), 797-810.
  5. Friswell, M.I., Penny, J.E.T. and Garvey, S.D. (1998), "A combined genetic and eigensensitivity algorithm for the location of damage in structures", Comput. Struct., 69(5), 547-556. https://doi.org/10.1016/S0045-7949(98)00125-4
  6. Gholizadeh, S. and Barati, H. (2014), "Topology optimization of nonlinear single layer domes by a new metaheuristic", Steel Compos. Struct., 16(6), 681-701. https://doi.org/10.12989/scs.2014.16.6.681
  7. Guo, H.Y. and Li, Z.L. (2009), "A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm", J. Mech. Syst. Signal Pr., 23(3), 769-782. https://doi.org/10.1016/j.ymssp.2008.07.008
  8. He, R.S. and Hwang, S.F. (2007), "Damage detection by a hybrid real-parameter genetic algorithm under the assistance of grey relation analysis", Eng. Appl. Artif. Intel., 20(7), 980-992. https://doi.org/10.1016/j.engappai.2006.11.020
  9. Koh, B.H. and Dyke, S.J. (2007), "Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data", Comput. Struct., 85(3-4), 117-130. https://doi.org/10.1016/j.compstruc.2006.09.005
  10. Lu, X.B., Liu, J.K. and Lu, Z.R. (2013), "A two-step approach for crack identification in beam", J. Sound Vib., 332(2), 282-293. https://doi.org/10.1016/j.jsv.2012.08.025
  11. Miguel, L.F.F., Lopez, R.H. and Miguel, L.F.F. (2013), "A hybrid approach for damage detection of structures under operational conditions", J. Sound Vib., 332(18), 4241-4260. https://doi.org/10.1016/j.jsv.2013.03.017
  12. Mares, C. and Surace, C. (1996), "An application of genetic algorithms to identify damage in elastic structures", J. Sound Vib., 195(2),195-215. https://doi.org/10.1006/jsvi.1996.0416
  13. Messina, A., Williams, E.J. and Contursi, T. (1998), "Structural damage detection by a sensitivity and statistical-based method", J. Sound Vib., 216(5), 791-808. https://doi.org/10.1006/jsvi.1998.1728
  14. Nobahari, M. and Seyedpoor, S.M. (2011), "Structural damage detection using an efficient correlation based index and a modified genetic algorithm", Math. Comput. Modell., 53(9-10), 1798-1809. https://doi.org/10.1016/j.mcm.2010.12.058
  15. Nouri Shirazi, M.R., Mollamahmoudi, H. and Seyedpoor, S.M. (2014), "Structural damage identification using an adaptive multi-stage optimization method based on a modified particle swarm algorithm", J. Optimiz. Theory Appl., 160(3), 1009-1019. https://doi.org/10.1007/s10957-013-0316-6
  16. Rao, A.R.M., Lakshmi, K. and Venkatachalam, D. (2012), "Damage diagnostic technique for structural health monitoring using POD and self-adaptive differential evolution algorithm", Comput. Struct., 106-107, 228-244. https://doi.org/10.1016/j.compstruc.2012.05.009
  17. Seyedpoor, S.M. (2012), "A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization", Int. J. Non-Linear Mechanics 47(1), 1-8. https://doi.org/10.1016/j.ijnonlinmec.2011.07.011
  18. Seyedpoor, S.M. (2011), "Structural damage detection using a multi-stage particle swarm optimization", Adv. Struct. Eng., 14(3), 533-549. https://doi.org/10.1260/1369-4332.14.3.533
  19. Seyedpoor, S.M., Shahbandeh, S. and Yazdanpanah, O. (2015), "An efficient method for structural damage detection using a differential evolution algorithm based optimization approach", Civil Eng. Environ. Syst., 32(3), 230-250. https://doi.org/10.1080/10286608.2015.1046051
  20. Storn, R. and Price, K. (1997), "Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces", J. Global Optim., 11(4), 341-359. https://doi.org/10.1023/A:1008202821328
  21. Vakil Baghmisheh, M.T., Peimani, M., Homayoun Sadeghi, M., Ettefagh, M.M. and Fakheri Tabrizi, A. (2012), "A hybrid particle swarm-Nelder-Mead optimization method for crack detection in cantilever beams", Appl. Soft Comput., 12(8), 2217-2226. https://doi.org/10.1016/j.asoc.2012.03.030
  22. Wang, X., Hu, N., Fukunaga, H. and Yao, Z.H. (2001), "Structural damage identification using static test data and changes in frequencies", Eng. Struct., 23(6), 610-621. https://doi.org/10.1016/S0141-0296(00)00086-9
  23. Wang, D., Xiang, W. and Zhu, H. (2014), "Damage identification in beam type structures based on statistical moment using a two step method", J. Sound Vib., 333(3), 745-760. https://doi.org/10.1016/j.jsv.2013.10.007
  24. Xiang, J. and Liang,M. (2012a), "Wavelet-based detection of beam cracks using modal shape and frequency measurements", Comput.-Aided Civil Infrastruct. E., 27(6), 439-454. https://doi.org/10.1111/j.1467-8667.2012.00760.x
  25. Xiang, J. and Liang, M. (2012b), "A two-step approach to multi-damage detection for plate structures", Eng. Fract. Mech., 91, 73-86. https://doi.org/10.1016/j.engfracmech.2012.04.028
  26. Xiang, J., Matsumoto, T., Wang, Y. and Jiang, Z. (2013), "Detect damages in conical shells using curvature mode shape and wavelet finite element method", Int. J. Mech. Sci., 66, 83-93. https://doi.org/10.1016/j.ijmecsci.2012.10.010
  27. Xiang, J., Matsumoto, T., Long, J., Wang, Y. and Jiang, Z. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335
  28. Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
  29. Zare Hosseinzadeh, A., Bagheri, A. and Ghodrati Amiri, G. (2013), "Two-stage method for damage localization and quantification in high-rise shear frames based on the first mode shape slope", Int. J. Optimiz. Civil Eng., 3(4), 653-672.
  30. Guidelines for Structural Health Monitoring, Design Manual No. 2, Appendix C, September 2001.

피인용 문헌

  1. A novel heuristic search algorithm for optimization with application to structural damage identification vol.19, pp.4, 2016, https://doi.org/10.12989/sss.2017.19.4.449
  2. Truss structure damage identification using residual force vector and genetic algorithm vol.25, pp.4, 2016, https://doi.org/10.12989/scs.2017.25.4.485
  3. Damage identification in laminated composite plates using a new multi-step approach vol.29, pp.1, 2018, https://doi.org/10.12989/scs.2018.29.1.139
  4. Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm vol.70, pp.6, 2016, https://doi.org/10.12989/sem.2019.70.6.649
  5. A New Two-Phase Method for Damage Detection in Skeletal Structures vol.43, pp.suppl1, 2016, https://doi.org/10.1007/s40996-018-0190-4
  6. Tunnel Back Analysis Based on Differential Evolution Using Stress and Displacement vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8156573
  7. A modified index for damage detection of structures using improved reduction system method vol.25, pp.1, 2020, https://doi.org/10.12989/sss.2020.25.1.001
  8. Structural damage identification of truss structures using self-controlled multi-stage particle swarm optimization vol.25, pp.3, 2016, https://doi.org/10.12989/sss.2020.25.3.345
  9. A fast damage detecting technique for indeterminate trusses vol.75, pp.5, 2016, https://doi.org/10.12989/sem.2020.75.5.585