DOI QR코드

DOI QR Code

SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space

  • 투고 : 2015.06.26
  • 심사 : 2015.12.25
  • 발행 : 2016.02.25

초록

The existence of SH-wave in a piezomagnetic layer overlying an initially stressed orthotropic half-space is investigated. The coupled of differential equations are solved for piezomagnetic layer overlying an orthotropic elastic half-space. The general dispersion equation has been derived for both magnetically open circuit and magnetically closed circuits under the four types of boundary conditions. In the absence of the piezomagnetic properties, initial stress and orthotropic properties of the medium, the dispersion equations reduce to classical Love equation. The SH-wave velocity has been calculated numerically for both magnetically open circuit and closed circuits. The effect of initial stress and magnetic permeability are illustrated by graphs in both the cases. The velocity of SH-wave decreases with the increment of wave number.

키워드

참고문헌

  1. Achenbach, J.D. (1976), Wave propagation in elastic solid, New York, North Holland.
  2. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143.. https://doi.org/10.12989/sss.2012.9.2.127
  3. Chattopadhyay, A., Gupta, S., Sharma, V.K. and Kumari, P. (2010), "Effect of point source and heterogeneity on the propagation of SH-waves", Int. J. Appl. Math. Mech., 6(9), 76-89.
  4. Chattopadhyay, A., Gupta, S., Kumari, P. and Sharma, V.K. (2012), "Effect of point source and heterogeneity on the propagation of SH-waves in a viscoelastic layer over a viscoelastic half-space", Acta Geophysica, 60(1), 119-139. https://doi.org/10.2478/s11600-011-0059-4
  5. Chattopadhyay, A., Singh, A.K. and Dhua, S. (2014), "Effect of heterogeneity and reinforcement on propagation of a crack due to shear waves", Int. J. Geomech., 10.1061/(ASCE)GM.1943-5622.0000356,04014013.
  6. Du, J., Harding, G.L., Ogilvy, J.A., Dencher, P.R. and Lake, M. (1996), "A study of Love-wave acoustic sensors", Sensor. Actuat. A-Phys, 56, 211-219. https://doi.org/10.1016/S0924-4247(96)01311-8
  7. Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic waves in layered media, New York, McGraw-Hill.
  8. Feng, W.J., Pan, E., Wang, X. and Jin, J. (2009), "Rayleigh waves in magnetoelectro-elastic half planes", Acta. Mech., 202, 127-134. https://doi.org/10.1007/s00707-008-0024-8
  9. Gubbins, D. (1990), Seismology and plate tectonics, Cambridge, Cambridge University Press.
  10. Gupta, R.R. and Gupta, R.R. (2013), "Analysis of wave motion in an anisotropic initially stressed fiber reinforced thermoelastic medium", Earthq. Struct., 4(1), 1-10. https://doi.org/10.12989/eas.2013.4.1.001
  11. Jakoby, B. and Vellekoop, M.J. (1997), "Properties of Love waves: applications in sensors", Smart Mater. Struct., 6, 668-679. https://doi.org/10.1088/0964-1726/6/6/003
  12. Koutsawa, Y., Tiem, S., Giunta, G. and Belouettar, S. (2014), "Effective electromechanical coupling coefficient of adaptive structures with integrated multi-functional piezoelectric structural fiber composites", Smart Struct. Syst., 13( 4), 501-515. https://doi.org/10.12989/sss.2014.13.4.501
  13. Kundu, S., Manna, S. and Gupta, S. (2014), "Propagation of SH-wave in an initially stressed orthotropic medium sandwiched by a homogeneous and a heterogeneous semi-infinite media", Math. Meth. Appl. Sci., DOI: 10.1002/mma.3203
  14. Li, X.Y., Wang, Z.K. and Huang, S.H., (2004), "Love waves in functionally graded piezoelectric materials", Int. J. Solids Struct., 41, 7309-7328. https://doi.org/10.1016/j.ijsolstr.2004.05.064
  15. Love, A E.H. (1944), A treatise on mathematical theory of elasticity, New York, Dover Publications.
  16. Marinkovic, D. and Marinkovic, Z. (2012), "On FEM modeling of piezoelectric actuators and sensors for thin-walled structures", Smart Struct. Syst., 9(5), 411-426. https://doi.org/10.12989/sss.2012.9.5.411
  17. Qian, Z., Jin, F. and Wang, Z. (2004), "Love waves propagation in a piezoelectric layered structure with initial stresses", Acta Mech., 171, 41-57.
  18. Sahu, S.A., Saroj, P.K. and Paswan, B. (2014), "Shear waves in a heterogeneous fiber-reinforced layer over a half-space under gravity", Int. J. Geomech., 10.1061/(ASCE)GM.1943-5622.0000404.
  19. Wang, Q. and Quek, S.T. (2001), "Love waves in piezoelectric coupled solid media", Smart Mater Struct., 10, 380-388. https://doi.org/10.1088/0964-1726/10/2/325
  20. Watanabe, K. and Payton, R.G. (2002), "Green's function for SH waves in a cylindrically monoclinic material", J. Mech. Phys. Solids, 50, 2425-2439. https://doi.org/10.1016/S0022-5096(02)00026-1
  21. Wu, T.T. and Chen, Y.Y. (2003), "Surface acoustic waves in layered piezoelectric media and its applications to the analyses of SAW devices", Chinese J. Mech. Eng.-Series A, 19, 207-214.
  22. Vives, A.A. (2008), Piezoelectric transducer and applications. Berlin, Springer.
  23. Zakharenko, A. (2005), "A Love-type waves in layered systems consisting of two cubic piezoelectric crystals", J Sound Vib., 285, 877-886. https://doi.org/10.1016/j.jsv.2004.08.044
  24. Zaitsev, B.D., Kuznetsova, I.E., Joshi, S.G. and Borodina, I.A. (2001), "Acoustic waves in piezoelectric plates bordered with viscous and conductive liquid", Ultrasonics, 39(1), 45-50. https://doi.org/10.1016/S0041-624X(00)00040-8

피인용 문헌

  1. Analysis of surface wave behavior in corrugated piezomagnetic layer resting on inhomogeneous half-space 2018, https://doi.org/10.1080/15376494.2017.1410905
  2. Buckling delamination of the PZT/Metal/PZT sandwich circular plate-disc with penny-shaped interface cracks vol.19, pp.2, 2016, https://doi.org/10.12989/sss.2017.19.2.163
  3. Rayleigh waves in anisotropic magnetothermoelastic medium vol.6, pp.3, 2016, https://doi.org/10.12989/csm.2017.6.3.317