Acknowledgement
Supported by : Sharif University of Technology
References
- Avraam, M., Horodinca, M., Romanescu, I. and Preumont, A. (2010), "Computer controlled rotational MR-brake for wrist rehabilitation device", J. Intell. Mat. Syst. Str., 21(15), 1543-1557. https://doi.org/10.1177/1045389X10362274
- Carlson, J.D. and Jolly, M.R. (2000), "MR fluid, foam and elastomer devices", Mechatronics, 10(4), 555-569. https://doi.org/10.1016/S0957-4158(99)00064-1
- Carlson, J.D., Matthis, W. and Toscano, J.R. (2001), "Smart prosthetics based on magnetorheological fluids", Smart Struct. Mater., 4332(308), 308-316.
- Dyke, S.J., Spencer, B.F. and Sain, M.K. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7(5), 693-704. https://doi.org/10.1088/0964-1726/7/5/012
- Gudmundsson, K.H., Jonsdottir, F., Thorsteinsson, F. and Gutfleisch, O. (2011), "An experimental investigation of unimodal and bimodal magnetorheological fluids with an application in prosthetic devices", J. Intell. Mat. Syst. Str., 22(6), 539-549. https://doi.org/10.1177/1045389X11403821
- Harnoy, A. (2002), Bearing Design in Machinery: Engineering Tribology and Lubrication, Marcel Dekker, Inc., New York, NY, USA.
- Hosford, W.F. and Caddell, R.M. (2007), Metal Forming: Mechanics and Metallurgy, (3rd Ed.), Cambridge University Press, UK.
- Jonsdottir, F., Thorarinsson, E.T., Palsson, H. and Gudmundsson, K.H. (2009), "Influence of parameter variations on the braking torque of a magnetorheological prosthetic knee", J. Intell. Mat. Syst. Str., 20(6) 659-667.
- Jonsdottir, F., Thorarinsson, E.T. and Gutfleisch, O. (2010), "Rheology of perfluorinated polyether-based MR fluids with nanoparticles", J. Intell. Mat. Syst. Str., 21(11), 1051-1060. https://doi.org/10.1177/1045389X10376844
- Kirkwood, R.N., Gomes, H.A., Sampaio, R.F., Culham, E. and Costigan, P. (2007), "Biomechanical analysis of hip and knee joints during gait in elderly subjects", Acta Ortop. Bras., 15(5), 267-271. https://doi.org/10.1590/S1413-78522007000500007
- Li, W.H. and Du, H. (2003), "Design and experimental evaluation of a magnetorheological brake", Int. J. Adv. Manuf. Technol., 21(7), 508-515. https://doi.org/10.1007/s001700300060
- Liu, B., Li, W.H., Kosasih, P.B. and Zhang, X.Z. (2006), "Development of an MR-brake-based haptic device", Smart Mater. Struct., 15(6), 1960-1966. https://doi.org/10.1088/0964-1726/15/6/052
- Naito, H., Akazawa, Y., Tagaya, K., Matsumoto, T. and Tanaka, M. (2009), "An ankle-foot orthosis with a variable-resistance ankle joint using a magnetorheological-fluid rotary damper", J. Biomech. Sci. Eng., 4(2), 182-191. https://doi.org/10.1299/jbse.4.182
- Nam, T.H. and Ahn, K.K. (2009), "A new structure of a magnetorheological brake with the waveform boundary of a rotary disk", Smart Mater. Struct., 8(11), doi:10.1088/0964-1726/18/11/115029.
- Nguyen, Q.H. and Choi, S.B. (2011), "A new approach to magnetic circuit analysis and its application to the optimal design of a bi-directional magnetorheological brake", Smart Mater. Struct., 20(12), doi:10.1088/0964-1726/20/12/125003.
- Nguyen, Q.H. and Choi, S.B. (2012a), "Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume", Smart Mater. Struct., 21(1), doi:10.1088/0964-1726/21/1/015012.
- Nguyen, Q.H. and Choi, S.B. (2012b), "Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux", Smart Mater. Struct., 21(5), doi:10.1088/0964-1726/21/5/055003.
- Park, E.J., Luz, L.F. and Suleman, A. (2008), "Multidisciplinary design optimization of an automotive magnetorheological brake design", Comput. Struct., 86(3-5), 207-216. https://doi.org/10.1016/j.compstruc.2007.01.035
- Pinkus, O. and Sternlicht, B. (1961), Theory of Hydrodynamic Lubrication, McGraw-Hill, New York, NY, USA.
- Rossa, C., Jaegy, A., Micaelli, A. and Lozada, J. (2014), "Development of a multilayered wide-ranged torque magnetorheological brake", Smart Mater. Struct., 23(2), doi:10.1088/0964-1726/23/2/025028.
- Spencer, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological Model for Magneto-rheological Dampers", J. Eng. Mech., 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Wereley, N.M., Cho, J.U., Choi, Y.T. and Choi, S.B. (2008), "Magnetorheological dampers in shear mode", Smart Mater. Struct., 17(1), doi:10.1088/0964-1726/17/01/015022.
- Xu, Z.D., Jia, D.H. and Zhang, X.C. (2012), "Performance tests and mathematical model considering magnetic saturation for magnetorheological damper", J. Intell. Mat. Syst. Str.., 23(12), 1331-1349. https://doi.org/10.1177/1045389X12445629
- Zareh, S.H., Sarrafan, A., Jahromi, A.F. and Khayyat, A. (2011), "Linear quadratic Gaussian application and clipped optimal algorithm using for semi active vibration of passenger car", Proceedings of the 2011 IEEE International Conference Mechatronics, Istanbul, Turkey, April.
- Zite, J.L., Ahmadkhanlou, F., Neelakantan, V.A., Washington, G.N. and Gregory, N. (2006), "A magnetorheological fluid based orthopedic active knee brace", Smart Struct. Mater., (6171), doi:10.1117/12.658693.
- Zhou, Z., Meng, S., Wu, J. and Zhao, Y. (2012), "Semi-active control on long-span reticulated steel structures using MR dampers under multi-dimensional earthquake excitations", Smart Struct. Syst., 10(6), 557-572. https://doi.org/10.12989/sss.2012.10.6.557
Cited by
- Intelligent control of an MR prosthesis knee using of a hybrid self-organizing fuzzy controller and multidimensional wavelet NN vol.31, pp.7, 2017, https://doi.org/10.1007/s12206-016-1236-9
- Evaluation of a multi-drum magnetorheological brake via finite element analysis considering number of drums and fluid gap selection in optimization vol.30, pp.5, 2019, https://doi.org/10.1177/1045389x19828517
- Novel active magnetorheological knee prosthesis presents low energy consumption during ground walking vol.32, pp.14, 2016, https://doi.org/10.1177/1045389x20983923