과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Phys. E., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Bedroud, M., Nazemnezhad, R. and Hosseini-Hashemi, S. (2015), "Axisymmetric/ asymmetric buckling of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Meccanica, 50, 1791-1806. https://doi.org/10.1007/s11012-015-0123-2
- Eberhardt, O. and Wallmersperger, T. (2014), "Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach", Smart Struct. Syst., 13(4), 685-709. https://doi.org/10.12989/sss.2014.13.4.685
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Hosseini-Hashemi, S., Kermajani, M. and Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Eur. J. Mech. A-Solids., 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005
- Hosseini, M., Sadeghi-Goughari, M., Atashipour, S.A. and Eftekhari, M. (2014), "Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model", Arch. Mech., 66(4), 217-244.
- Liew, K.M., He, X.Q. and Kitipornchai, S. (2006), "Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix", Acta. Mater., 54(16), 4229-4236. https://doi.org/10.1016/j.actamat.2006.05.016
- Li, C., Lim, C.W. and Yu, J.L. (2011), "Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load", Smart Mater. Struct., 20(1), 015023. https://doi.org/10.1088/0964-1726/20/1/015023
- Murmu, T. and Pradhan, S.C. (2009), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica. E., 41(8), 1451-1456. https://doi.org/10.1016/j.physe.2009.04.015
- Pradhan, S.C. and Phadikar, J.K. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1), 206-223. https://doi.org/10.1016/j.jsv.2009.03.007
- Pradhan, S.C. and Kumar, A. (2011), "Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method", Compos. Struct., 93(2), 774-779. https://doi.org/10.1016/j.compstruct.2010.08.004
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sahmani, S. and Bahrami, M. (2015), "Nonlocal plate model for dynamic pull-in instability analysis of circular higher-order shear deformable nanoplates including surface stress effect", J. Mech. Sci. Tech., 29(3), 1151-1161. https://doi.org/10.1007/s12206-015-0227-6
- Shen, Z.B., Tang, H.L., Li, D.K. and Tang, G.J. (2012), "Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory", Comput. Mater. Sci., 61, 200-205. https://doi.org/10.1016/j.commatsci.2012.04.003
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Yan, J.W., Tong, L.H., Li, C., Zhu, Y. and Wang, Z.W. (2015), "Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory", Compos. Struct., 125, 304-313. https://doi.org/10.1016/j.compstruct.2015.02.017
- Yin, F., Chen, C.P. and Chen, D.L. (2015), "Vibration analysis of nano-beam with consideration of surface effects and damage effects", Nonlinear Eng., 4(1), 61-66.
- Zhang, Y., Zhang, L.W., Liew, K.M. and Yu, J.L. (2015), "Transient analysis of single-layered graphene sheet using the kp-Ritz method and nonlocal elasticity theory", Appl. Math. Comput., 258, 489-501.
- Zhang, Y., Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2015), "Nonlocal continuum model for vibration of single-layered graphene sheets based on the element-free kp-Ritz method", Eng. Anal. Bound. Elem., 56, 90-97. https://doi.org/10.1016/j.enganabound.2015.01.020
피인용 문헌
- A semi-continuum-based bending analysis for extreme-thin micro/nano-beams and new proposal for nonlocal differential constitution vol.172, 2017, https://doi.org/10.1016/j.compstruct.2017.03.070
- Nonlocal Thermo-Electro-Mechanical coupling vibrations of axially moving piezoelectric nanobeams vol.45, pp.4, 2017, https://doi.org/10.1080/15397734.2016.1242079
- Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory vol.45, 2017, https://doi.org/10.1016/j.apm.2016.12.006
- Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory vol.22, pp.6, 2016, https://doi.org/10.12989/scs.2016.22.6.1301
- Dynamics of silicon nanobeams with axial motion subjected to transverse and longitudinal loads considering nonlocal and surface effects vol.19, pp.1, 2017, https://doi.org/10.12989/sss.2017.19.1.105
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.351
- A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
- Exact nonlocal solutions of circular nanoplates subjected to uniformly distributed loads and nonlocal concentrated forces vol.42, pp.1, 2016, https://doi.org/10.1007/s40430-019-2144-6
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2016, https://doi.org/10.12989/scs.2020.34.5.643
- On the vibration and buckling analysis of quadrilateral and triangular nanoplates using nonlocal spline finite strip method vol.42, pp.4, 2016, https://doi.org/10.1007/s40430-020-2245-2
- Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads vol.7, pp.2, 2020, https://doi.org/10.12989/smm.2020.7.2.085
- Size-dependent vibration of single-crystalline rectangular nanoplates with cubic anisotropy considering surface stress and nonlocal elasticity effects vol.170, pp.None, 2022, https://doi.org/10.1016/j.tws.2021.108518