DOI QR코드

DOI QR Code

Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations

  • Salvi, Jonathan (Universita di Bergamo, Dipartimento di Ingegneria e Scienze Applicate) ;
  • Rizzi, Egidio (Universita di Bergamo, Dipartimento di Ingegneria e Scienze Applicate)
  • 투고 : 2014.12.06
  • 심사 : 2015.12.02
  • 발행 : 2016.02.25

초록

This study concerns the derivation of optimum tuning formulas for a passive Tuned Mass Damper (TMD) device, for the case of benchmark ideal excitations acting on a single-degree-of-freedom (SDOF) damped primary structure. The free TMD parameters are tuned first through a non-linear gradient-based optimisation algorithm, for the case of harmonic or white noise excitations, acting either as force on the SDOF primary structure or as base acceleration. The achieved optimum TMD parameters are successively interpolated according to appropriate analytical fitting proposals, by non-linear least squares, in order to produce simple and effective TMD tuning formulas. In particular, two fitting models are presented. The main proposal is composed of a simple polynomial relationship, refined within the fitting process, and constitutes the optimum choice. A second model refers to proper modifications of literature formulas for the case of an undamped primary structure. The results in terms of final (interpolated) optimum TMD parameters and of device effectiveness in reducing the structural dynamic response are finally displayed and discussed in detail, showing the wide and ready-to-use validity of the proposed optimisation procedure and achieved tuning formulas. Several post-tuning trials have been carried out as well on SDOF and MDOF shear-type frame buildings, by confirming the effective benefit provided by the proposed optimum TMD.

키워드

참고문헌

  1. Adam, C. and Furtmuller, T. (2010), "Seismic performance of tuned mass dampers", (Eds., H. Irschik, M. Krommer, K. Watanabe, T. Furukawa), Mechanics and Model-Based Control of Smart Materials and Structures, Springer-Verlag, 1st Ed., 11-18.
  2. Aly, A.M. (2014), "Vibration control of high-rise buildings for wind: a robust passive and active tuned mass damper", Smart Struct. Syst., 13(3), 473-500. https://doi.org/10.12989/sss.2014.13.3.473
  3. Asami, T., Nishihara, O. and Baz, A.M. (2002), "Analytical solutions to $H_{\infty}$ and $H_2$ optimization of dynamic vibration absorber attached to damped linear systems", J. Vib. Acoust., 124(2), 284-295. https://doi.org/10.1115/1.1456458
  4. Bandivadekar, T.P. and Jangid, R.S. (2013), "Optimization of multiple tuned mass dampers for vibration control of system under external excitation", J. Vib. Control, 19(12), 1854-1871. https://doi.org/10.1177/1077546312449849
  5. Bakre, S.V. and Jangid, R.S. (2006), "Optimum parameters of tuned mass damper for damped main system", Struct. Control Health., 14(3), 448-470.
  6. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
  7. Bisegna, P. and Caruso, G. (2012), "Closed-form formulas for the optimal pole-based design of tuned mass dampers", J. Sound Vib., 331(10), 2291-2314. https://doi.org/10.1016/j.jsv.2012.01.005
  8. Brock, J.E. (1946), "A note on the damped vibration absorber", J. Appl. Mech.-ASME, 13(4), A-284.
  9. Brown, B. and Singh, T. (2011), "Minimax design of vibration absorbers for linear damped systems", J. Sound Vib., 330(11), 2437-2448. https://doi.org/10.1016/j.jsv.2010.12.002
  10. Crandall, S.H. and Mark,W.D. (1963), Random Vibration in Mechanical Systems, Academic Press, 1st Ed..
  11. Den Hartog, J.P. (1956), Mechanical Vibrations, McGraw-Hill, 4th Ed..
  12. Desu, N.B., Dutta, A. and Deb, S.K. (2007), "Optimal assessment and location of tuned mass dampers for seismic response control of a plan-asymmetrical building", Struct. Eng. Mech., 26(4), 459-477. https://doi.org/10.12989/sem.2007.26.4.459
  13. Frahm, H. (1911), Device for damping vibrations of bodies, U.S.Patent No.989958.
  14. Fujino, Y. and Abe, M. (1993), "Design formulas for tuned mass dampers based on a perturbation technique", Earthq. Eng. Struct. D., 22(10), 833-854. https://doi.org/10.1002/eqe.4290221002
  15. Ghosh, A. and Basu, B. (2007), "A closed-form optimal tuning criterion for TMD in damped structures", Struct. Control Health., 14(4), 681-692. https://doi.org/10.1002/stc.176
  16. Hahnkamm, E. (1933), "Die Dampfung von Fundamentschwingungen bei veranderlicher Erregerfrequenz", Ing.-Archiv, 4, 192-201. https://doi.org/10.1007/BF02079857
  17. Ioi, T. and Ikeda, K. (1978), "On the dynamic vibration damped absorber of the vibration system", Bull. Jap. Soc. of Mech. Eng., 21(151), 64-71. https://doi.org/10.1299/jsme1958.21.64
  18. Krenk, S. (2005), "Frequency analysis of the Tuned Mass Damper", J. Appl. Mech.-ASME, 72(6), 936-942. https://doi.org/10.1115/1.2062867
  19. Krenk, S. and Hogsberg, J. (2008), "Tuned mass absorbers on damped structures under random load", Probabilist. Eng. Mech., 23(4), 408-415. https://doi.org/10.1016/j.probengmech.2007.04.004
  20. Leung, A.Y.T. and Zhang, H. (2009), "Particle Swarm Optimization of tuned mass dampers", Eng. Struct., 31(3), 715-728. https://doi.org/10.1016/j.engstruct.2008.11.017
  21. Leung, A.Y.T., Zhang, H., Cheng, C.C. and Lee, Y.Y. (2008), "Particle Swarm Optimization of TMD by non-stationary base excitation during earthquake", Earthq. Eng. Struct. D., 37(9), 1223-1246. https://doi.org/10.1002/eqe.811
  22. Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new results", J. Sound Vib., 284(3-5),1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
  23. Marano, G.C. and Greco, R. (2011), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", J. Vib. Control, 17(5), 679-688. https://doi.org/10.1177/1077546310365988
  24. Matta, E. (2011), "Performance of tuned mass dampers against near-field earthquakes", Struct. Eng. Mech., 39(5), 621-642. https://doi.org/10.12989/sem.2011.39.5.621
  25. Morga, M. and Marano, G.C. (2014), "Optimization criteria of TMD to reduce vibrations generated by the wind in a slender structure", J. Vib. Control, 20(16), 2404-2416. https://doi.org/10.1177/1077546313478296
  26. Ormondroyd, J. and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", J. Appl. Mech.-ASME, 50(7), 9-22.
  27. Pennestrì, E. (1998), "An application of Chebyshev's Min-Max criterion to the optimal design of a damped dynamic vibration absorber", J. Sound Vib., 217(4), 757-765. https://doi.org/10.1006/jsvi.1998.1805
  28. Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3
  29. Randall, S.E., Halsted, D.M. and Taylor, D.L. (1981), "Optimum vibration absorbers for linear damped systems", J. Mech. Des.-ASME, 103(4), 908-913. https://doi.org/10.1115/1.3255005
  30. Rizzi, E., Brescianini, D. and Scotti, M. (2009), "On the optimal tuning of Tuned Mass Dampers in structural systems", Proceedings of the ECCOMAS Thematic Conference-2nd Int. Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2009), Rhodes, Greece, 22-24 June 2009, (Eds., M. Papadrakakis, N.D. Lagaros, M. Fragiadakis ), 24 pages.
  31. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of Tuned Mass Dampers for seismic applications", Earthq. Eng. Struct. D., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z
  32. Salvi, J. and Rizzi, E. (2011), "Minimax optimization of Tuned Mass Dampers under seismic excitation", Proceedings of the 8th Int. Conf. on Structural Dynamics (EURODYN 2011), Leuven, Belgium, 4-7 July 2011, (Eds., G. De Roeck, G. Degrande, G. Lombaert, G. Muller), Book of Abstract, ISBN: 978-90-760-1931-4, p. 68; CD-ROM Proceedings, p. 1892-1899, 8 pages, 2011.
  33. Salvi, J. and Rizzi, E. (2012), "A numerical approach towards best tuning of Tuned Mass Dampers", Proceedings of the 25th Int. Conf. on Noise and Vibration Engineering (ISMA 2012), Leuven, Belgium, 17-19 September 2012, (Eds., P. Sas, D. Moens, S. Jonckheere), Book of Abstracts, ISBN: 978-90-738-0289-6, p. 141; CD-ROM Proceedings. p. 2419-2434, 16 pages.
  34. Salvi, J., Rizzi, E., Rustighi, E. and Ferguson, N.S. (2013), "Analysis and optimisation of Tuned Mass Dampers for impulsive excitation", Proceedings of the 11th Int. Conf. on Recent Advances in Structural Dynamics (RASD 2013), Pisa, Italy, July 1-3, 2013, (Ed., E. Rustighi), Book of Abstracts, p. 64, CD-ROM Proceedings, ISBN: 9780854329649, Paper ID 1002, p. 1-15, 15 pages.
  35. Salvi, J., Rizzi, E. and Gavazzeni, M. (2014), "Analysis on the optimum performance of Tuned Mass Damper devices in the context of earthquake engineering", Proceedings of the 9th International Conference on Structural Dynamics (EURODYN 2014), Porto, Portugal, 30 June-2 July 2014, A. Cunha, (Eds., E. Caetano, P. Ribeiro, G. Muller), Book of Abstracts, ISBN: 978-972-752-166-1, p. 85; CDROM Proceedings, ISSN: 2311-9020, ISBN: 978-972-752-165-4, p. 1729-1736, 8 pages, 2014.
  36. Salvi, J. and Rizzi, E. (2015), "Optimum tuning of Tuned Mass Dampers for frame structures under earthquake excitation", Struct. Control Health., doi:10.1002/stc.1710, 22(4), 707-715.
  37. Salvi, J., Rizzi, E., Rustighi, E. and Ferguson, N.S. (2015), "On the optimisation of a hybrid Tuned Mass Damper for impulse loading", Smart Mater. Struct., doi:10.1088/0964-1726/24/8/085010, 24(8)(2015)085010, 15 pages.
  38. Salvi, J., Rizzi, E., Rustighi, E. and Ferguson, N.S. (2015), "Optimum tuning of passive Tuned Mass Dampers for the mitigation of pulse-like responses", Submitted for publication.
  39. Setareh, M. (2001), "Use of semi-active mass dampers for vibration control of force-excited structures", Struct. Eng. Mech., 11(4), 341-356. https://doi.org/10.12989/sem.2001.11.4.341
  40. Sun, C., Nagarajaiah, S. and Dick, A.J. (2014), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation", Smart Struct. Syst., 13(2), 319-341. https://doi.org/10.12989/sss.2014.13.2.319
  41. The MathWorks Inc. (2011), MATLAB User's Guide and Optimization Toolbox, USA.
  42. Thompson, A.G. (1981), "Optimum tuning and damping of a dynamic vibration absorber applied to a force excited and damped primary system", J. Sound Vib., 77(3), 403-415. https://doi.org/10.1016/S0022-460X(81)80176-9
  43. Tigli, O.F. (2012), "Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads", J. Sound Vib., 331(13), 3035-3049. https://doi.org/10.1016/j.jsv.2012.02.017
  44. Tributsch, A. and Adam, C. (2012), "Evaluation and analytical approximation of Tuned Mass Damper performance in an earthquake environment", Smart Struct. Syst., 10(2),155-179. https://doi.org/10.12989/sss.2012.10.2.155
  45. Tsai, H.C. and Lin, G.C. (1993), "Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems", Earthq. Eng. Struct. D., 22(11), 957-973. https://doi.org/10.1002/eqe.4290221104
  46. Tsai, H.C. and Lin, G.C. (1994), "Explicit formulae for optimum absorber parameters for force-excited and viscously damped systems", J. Sound Vib., 176(5), 585-596. https://doi.org/10.1006/jsvi.1994.1400
  47. Villaverde, R. and Koyama, L.A. (1993), "Damped resonant appendages to increase inherent damping in buildings", Earthq. Eng. Struct. D., 22(6), 491-507. https://doi.org/10.1002/eqe.4290220603
  48. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. D., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304
  49. Warnitchai, P. and Hoang, N. (2006), "Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response", Smart Struct. Syst., 2(1), 1-24. https://doi.org/10.12989/sss.2006.2.1.001
  50. Wong, W.O. and Cheung, Y.L. (2008), "Optimal design of a damped dynamic vibration absorber for vibration control of structure excited by ground motion", Eng. Struct., 30(1), 282-286. https://doi.org/10.1016/j.engstruct.2007.03.007
  51. Zilletti, M., Elliott, S.J. and Rustighi, E. (2012), "Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation", J. Sound Vib., 331(18), 4093-4100. https://doi.org/10.1016/j.jsv.2012.04.023

피인용 문헌

  1. Concept study of a novel energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) device for vibration control of harmonically-excited structures vol.744, 2016, https://doi.org/10.1088/1742-6596/744/1/012082
  2. Wind Induced Vibration Control and Energy Harvesting of Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter for Building Structures vol.2017, 2017, https://doi.org/10.1155/2017/4180134
  3. Optimum earthquake-tuned TMDs: Seismic performance and new design concept of balance of split effective modal masses vol.101, 2017, https://doi.org/10.1016/j.soildyn.2017.05.029
  4. Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.075
  5. Optimum Tuning of Passive Tuned Mass Dampers for the Mitigation of Pulse-Like Responses vol.140, pp.6, 2018, https://doi.org/10.1115/1.4040475
  6. An Alternative Formulation for Optimum TMD Parameters Based on Equal Eigen Value Criteria pp.1559-808X, 2019, https://doi.org/10.1080/13632469.2018.1559263
  7. The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting vol.19, pp.6, 2017, https://doi.org/10.12989/sss.2017.19.6.665
  8. Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine vol.63, pp.3, 2016, https://doi.org/10.12989/sem.2017.63.3.303
  9. Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2016, https://doi.org/10.12989/csm.2017.6.3.229
  10. Motion-based design of TMD for vibrating footbridges under uncertainty conditions vol.21, pp.6, 2016, https://doi.org/10.12989/sss.2018.21.6.727
  11. Optimum design of linear multiple tuned mass dampers subjected to white-noise base acceleration considering practical configurations vol.171, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2018.06.002
  12. Effective Heterogeneous Data Fusion procedure via Kalman filtering vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.631
  13. Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge vol.23, pp.5, 2019, https://doi.org/10.12989/sss.2019.23.5.449
  14. TMD effectiveness in nonlinear RC structures subjected to near fault earthquakes vol.24, pp.4, 2019, https://doi.org/10.12989/sss.2019.24.4.447
  15. Analytical Method for Designing the Tuned Mass Damper Based on the Complex Stiffness Theory vol.43, pp.4, 2016, https://doi.org/10.1007/s40996-018-0222-0
  16. On the Improvement of Vibration Mitigation and Energy Harvesting Using Electromagnetic Vibration Absorber-Inerter: Exact H2 Optimization vol.141, pp.6, 2016, https://doi.org/10.1115/1.4044303
  17. Optimum Design of Tuned Mass Dampers Using Colliding Bodies Optimization in Frequency Domain vol.44, pp.3, 2020, https://doi.org/10.1007/s40996-019-00296-6
  18. Design of a tuned mass damper for damped structures using an orthogonal-function-based equivalent linearization method vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.10.069
  19. Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.11.002
  20. On the Numerical Modelization of Moving Load Beam Problems by a Dedicated Parallel Computing FEM Implementation vol.28, pp.4, 2016, https://doi.org/10.1007/s11831-020-09459-5
  21. Optimum Tuned Inerter Damper for Base-Isolated Structures vol.9, pp.7, 2021, https://doi.org/10.1007/s42417-021-00309-7