DOI QR코드

DOI QR Code

Digestive Physiological Characteristics of the Gobiidae - Characteristics of CCK-producing Cells and Mucus-secreting Goblet Cells of Stomach Fish and Stomachless Fish -

  • Hur, Sang-Woo (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Shin-Kwon (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Kim, Dae-Jung (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Bae-Ik (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Park, Su-Jin (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Hwang, Hyung-Gyu (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Jun, Je-Cheon (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Myeong, Jeong-In (Aquaculture Management Division, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Chi-Hoon (Marine Science Institute, Jeju National University) ;
  • Lee, Young-Don (Marine Science Institute, Jeju National University)
  • 투고 : 2016.07.11
  • 심사 : 2016.09.17
  • 발행 : 2016.09.30

초록

In this study, we investigated the characteristics of CCK-producing cells and mucus-secreting goblet cells with respect to stomach fish and stomachless fish of the Gobiidae in order to provide a basis for understanding the digestive physiology. Hairychin goby (Sagamia geneionema), which is stomachless fish, the numbers of mucus-secreting goblet cells is highest in the posterior intestine portion (P<0.05), while CCK-producing cells are scattered throughout the intestine. Gluttonous goby (Chasmichthys gulosus), which is stomach fish, mucus-secreting goblet cells are most abundant in the mid intestine portion (P<0.05), whereas CCK-producing cells are observed only in the anterior and mid intestine portion. Trident goby (Tridentiger obscurus) which is stomach fish, mucus-secreting goblet cells were most abundant in the mid intestine portion (P<0.05). CCK-producing cells are found in the anterior and mid intestine portion. Giurine goby, Rhinogobius giurinus which is also stomach fish, the largest number of mucus-secreting goblet cells showed in anterior intestine portion except for esophagus (P<0.05). CCK-producing cells are present only in the anterior and mid intestine portion. In S. geneionema, digestive action occurs in the posterior intestine portion to protect and functions to activate digestion. In contrast, in C. gulosus, T. obscurus and R. giurinus, their digestive action occurs in the anterior and mid intestine portion to protect and functions to activate digestion. Further studies of the modes of food ingestion by these fish, the contents of their digestive tracts, and the staining characteristics of the goblet cells need to be carried out.

키워드

참고문헌

  1. Al-Hussaini AH (1947) The feeding habits and the morphology of the alimentary tract of some teleost living in the neighbourhood of the Marine Biological Station, Ghardaqa, Red Sea. Publ Mar Biol Stn Al-Ghardaqa 5:1-61.
  2. Al-Hussaini AH (1949) On the functional morphology of the alimentary tract of some fish in the relation to differences in their feeding habits: Anatomy and histology. Q J Microsc Sci 90:109-139.
  3. Aldman G, Grove D, Holmgren S (1992) Duodenal acidifycation and intra-arterial injection of CCK8 increase gallbladder motility in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 86:20-25. https://doi.org/10.1016/0016-6480(92)90121-Y
  4. Aldman G, Holmgren S (1987) Control of gall bladder motility in the rainbow trout, Salmo gairdneri. Fish Physiol Biochem 4:143-155. https://doi.org/10.1007/BF02110881
  5. Allen A, Hutton DA, Leonard AJ, Pearson JP, Sellers LA (1986) The role of mucus in the protection of the gastroduodenal mucosa. Scand J Gastroenteral 21:71-77.
  6. Babkin BP, Bowie DJ (1928) The digestive system and its function in Fundulus heteroclitus. Biol Bull 54:254-277. https://doi.org/10.2307/1536857
  7. Barrington EJW (1942) Gastric digestion in the lower vertebrates. Biol Rev 17:1-27.
  8. Bell FR (1979) The relevance of the new knowledge of gastrointestinal hormones to veterinary science. Vet Sci Commun 2:305-314.
  9. Biederbick A, Elsӓsser HP (1998) Diurnal pattern of rat pancreatic acinar cell replication. Cell Tiss Res 291:277-283. https://doi.org/10.1007/s004410050997
  10. Buddington RK, Krogdahl A (2004) Hormonal regulation of the fish gastrointestinal tract. Comp Biochem Physiol A 139:261-271.
  11. Byeon KA, Jo UB (1985) Histochemical properties on mucosubstances of the intestine in Sparus swinhonis (Günther), Erosa erosa (Langsdorf) and Sebastes inermis (Cuvier et Valenciennes). Journal of Science, Pusan National University 40:251-269. (in Korean)
  12. Chao LN (1973) Digestive system and feeding habits of the cunner, Tautogolabrus adspersus, a stomachless fish. Fish Bull 71:565-586.
  13. Choi JS (1996) Histochemical studies of mucosubstances in the intestine of Pleuronichthys cornutus, Paralichthys olivaceus, Acanthogobius hasta, Zoarces gillii and Lagocephalus wheeleri. MS. Thesis, Pusan National University, pp 5-24. (in Korean)
  14. Domeneghini C, Pannelli Straini R, Veggetti A (2005) Histochemical analysis of glycoconjugate secretion in the alimentary canal of Anguilla anguilla L. Acta Histochem 106:477-487. https://doi.org/10.1016/j.acthis.2004.07.007
  15. Einarsson S, Davies PS, Talbot C (1997) Effect of exogenous cholecystokinin on the discharge of the gallbladder and the secretion of trypsin and chymotrypsin from the pancreas of the Atlantic salmon, Salmo salar L. Comp Biochem Physiol 117C:63-67.
  16. El-Salhy M (1984a) Occurrence of polypeptide YY(PYY) and pancreatic polypeptide (PP) in the gastrointestinal tract of the bony fish. Biom Res 5:441-444. https://doi.org/10.2220/biomedres.5.441
  17. El-Salhy M (1984b) Immunocytochemical investigation of the gastroenteropancreatic (GEP) neurohormonal peptides in the pancreas and gastrointestinal tract of the dogfish, Squalus acanthias. Histochemistry 80:192-205.
  18. Fritsch HAR, Noorden SV and Pearse AGE (1978) Localization of somatostatin and gastrin-like immunoreactivity in the gastrointestinal of Ciona intestinalis L. Cell Tiss Res 186:181-185. https://doi.org/10.1007/BF00219664
  19. Garcia-Hernandez MP, Lozano MT, Agulleiro B (1994) Ontogeny of some endocrine cells of the digestive tract in sea bass (Dicentrarchus labrax): An immunecytochemical study. Cell Tiss Res 277:373-383. https://doi.org/10.1007/BF00327785
  20. Hansen, GN, Hansen BL, Jorgensen PN (1987) Insulin-, glucagon-, and somatostatin-like immunoreactivity in the endocrine pancreas of the lungfish, Neoceratodus forsteri. Cell Tiss. Res 248:181-185. https://doi.org/10.1007/BF01239979
  21. Holmgren S, Vaillant C, Dimanline R (1982) VIP-, substance P-, gastrin/CCK-, bombesin-, somatostatin- and glucagonlike immunoreactivities in the gut of the rainbow trout. Cell Tiss Res 223:141-153.
  22. Hsu, SM, Raine L, Fanger H (1981) Use of Avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem 29:577-580.
  23. Hur SW, Lee CH, Kim BH, Lee YD (2015) Histological characteristics of the digestive tract of the gobiidae in Jeju Island, Korea. Bull Mar Sci Inst 39:15-28.
  24. Ishida J (1936) Distribution of the digestive enzymes in the digestive system of the stomachless fishes. Annot Zool Jap 15: 263-284.
  25. Jenkins PG, Pulsford AL, Harris JE (1992) Microscopy of the absorptive cells and gut associated lympoid tissue of the flounder Platichthys flesus. J Mar Biol Ass UK 72:553-567. https://doi.org/10.1017/S0025315400059348
  26. Jensen J, Holmgren S (1985) Neurotransmitter in the intestine of the Atlantic cod, Gadus morhua. Comp Biochem Physiol C 82:81-89. https://doi.org/10.1016/0742-8413(85)90213-0
  27. Jo UB, Kim BS, Chai IJ, Back SY, Shin IS (1984) Histochemical properties of mucosubstances on the intestinal mucous cells in the teleosts. Journal of Science, Pusan National University 37:1-15. (in Korean)
  28. Johnsen AH (1998) Phylogeny of the cholecystokinin/ gastrin family. Front Neuroendocrinol 19:73-99. https://doi.org/10.1006/frne.1997.0163
  29. Jonsson AC, Holmgren S, Holstein B (1987) Gastrin/CCK-like immunoreactivity in endocrine cells and nerves in the gastrointestinal tract of the cod, Gadus morhua, and the effect of peptides of the gastrin/CCK family on cod gastrointestinal smooth muscle. Gen Comp Endocrinol 66:190-202. https://doi.org/10.1016/0016-6480(87)90267-X
  30. Kamisaka Y, Fujii Y, Yamamoto S, Kurokawa T, Ronnestad I, Totland GK, Tagawa M, Tanaka M (2003) Distribution of cholecystokinin-immunoreactive cells in the digestive tract of the larval teleost, ayu, Plecoglossus altivelis. Gen Comp Endocrinol 134:116-121. https://doi.org/10.1016/S0016-6480(03)00242-9
  31. Kamisaka Y, Masuma T, Kurokawa M, Suzuki T, Totland GK, Ronnestad I, Tagawa M, Tanaka M (2002) Ontogeny of cholecystokinin-immunoreactive cells in the digestive tract of blue fin tuna, Thunnus thynnus, larvae. Sarsia 87:258-262. https://doi.org/10.1080/00364820260294888
  32. Kamisaka Y, Totland GK, Tagawa M, Tanaka M, Ronnestad I (2001) Ontogeny of cholecystokinin (CCK)-immunoreactive cells in the digestive tract of Atlantic halibut, Hippoglossus hippoglossus, larvae. Gen Comp Endocrinol 123:31-37. https://doi.org/10.1006/gcen.2001.7653
  33. Kurokawa T, Suzuki T, Andoh T (2000) Development of cholecystokinin and pancreatic polypeptide endocrine system during the larval stage of Japanese flounder, Paralichthys olivaceus. Gen Comp Endocrinol 120:8-16. https://doi.org/10.1006/gcen.2000.7512
  34. Lebenthal A, Lebenthal E (1999) The ontogeny of the small intestine epithelium. J Paren Enter Nutri 23:3-6. https://doi.org/10.1177/014860719902300502
  35. Lee JS, Chin P (1995) Morphology and histochemical characteristics of the alimentary tract in surfperch, Ditrema Temmincki. Korean J Ichthyol 7:140-149. (in Korean)
  36. Liddle RA (1997) Cholecystokinin cells. Annu Rev Physiol 59:221-242. https://doi.org/10.1146/annurev.physiol.59.1.221
  37. Morrison CM, Wright Jr JR (1999) A study of the histology of the digestive tract of the Nile tilapia. J Fish Biol 54:597-606. https://doi.org/10.1111/j.1095-8649.1999.tb00638.x
  38. Noaillac-Depeyre J, Hollande E (1981) Evidence for somatostatin, gastrin and pancreatic polypeptide-like substance in the mucosa cells of the gut in fishes and without stomach. Cell Tiss Res 216:193-203.
  39. Olsson C, Aldman G, Larsson A, Holmgren S (1999) Cholecystokinin affects gastric emptying and stomach motility in the rainbow trout, Oncorhynchus mykiss. J Exp Biol 202:161-170.
  40. Osman AHK, Caceci T (1991) Histology of the stomach of Tilapia nilotica (Linnaeus, 1758) from the River Nile. J Fish Biol 38:211-223. https://doi.org/10.1111/j.1095-8649.1991.tb03107.x
  41. Peyon P, Lin XW, Himick BA, Peter RE (1997) Molecular cloning and expression of cDNA encoding brain precholecystokinin in goldfish. Peptides 19:199-210.
  42. Rajjo IM, Vigna SR, Crim JW (1988) Actions of cholecystokinin- related peptides on the gall bladder of bony fishes in vitro. Comp Biochem Physiol C90:267-273 https://doi.org/10.1016/0742-8413(88)90132-6
  43. Reifel CW, Travill AA (1979) Structure and carbohydrate histochemistry of the intestine in ten teleostean species. J Morp 162:343-360. https://doi.org/10.1002/jmor.1051620305
  44. Reinecke M, Muller C, Segner H (1997) An immunehistochemical analysis of the ontogeny, distribution and coexistence of 12 regulatory peptides and serotonin in endocrine cells and nerve fibers of the digestive tract of the turbot, Scophthalmus maximus (teleostei). Anat Embryol 195:87-101.
  45. Suyehiro Y (1941) A study on the digestive system and feeding habits of fish. Jpn J Ichthyol 10:1-313.
  46. Szarski H (1965) Cause of the absence of a stomach in Cyprinidae. Bull Acad Pol Sci Biol 4:155-156.
  47. Tanaka M (1969) Studies on the structure and function of the digestive system in larvae at the stage of first feeding. Japan J Ichthyol 16:164-174.
  48. Verspohl EJ, Ammon HP (1987) Cholecystokinin (CCK8) regulates glucagon, insulin, and somatostatin secretion from isolated rat pancreatic islets: Interaction with glucose. Pflugers Arch 410:284-287. https://doi.org/10.1007/BF00580278