DOI QR코드

DOI QR Code

Comparison of the fit accuracy of zirconia-based prostheses generated by two CAD/CAM systems

  • Ha, Seok-Joon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Cho, Jin-Hyun (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • Received : 2016.03.27
  • Accepted : 2016.10.11
  • Published : 2016.12.30

Abstract

PURPOSE. The purposes of this study are to evaluate the internal and marginal adaptation of two widely used CAD/CAM systems and to study the effect of porcelain press veneering process on the prosthesis adaptation. MATERIALS AND METHODS. Molar of a lower jaw typodont resin model was prepared by adjusting a 1.0 mm circumferential chamfer, an occlusal reduction of 2.0 mm, and a $5^{\circ}$ convergence angle and was duplicated as an abrasion-resistant master die. The monolithic crowns and copings were fabricated with two different CAD/CAM system-Ceramil and Zirkonzahn systems. Two kinds of non-destructive analysis methods are used in this study. First, weight technique was used to determine the overall fitting accuracy. And, to evaluate internal and marginal fit of specific part, replica technique procedures were performed. RESULTS. The silicone weight for the cement space of monolithic crowns and copings manufactured with Ceramil system was significantly higher than that from Zirkonzahn system. This gap might cause the differences in the silicone weight because the prostheses were manufactured according to the recommendation of each system. Marginal discrepancies of copings made with Ceramil system were between 106 and $117{\mu}m$ and those from Zirkonzahn system were between 111 and $115{\mu}m$. Marginal discrepancies of copings made with Ceramil system were between 101 and $131{\mu}m$ and those from Zirkonzahn system were between 116 and $131{\mu}m$. CONCLUSION. Marginal discrepancy was relatively lower in Ceramil system and internal gap was smaller in Zirkonzahn system. There were significant differences in the internal gap of monolithic crown and coping among the 2 CAD/CAM systems. Marginal discrepancy produced from the 2 CAD/CAM systems were within a reported clinically acceptable range of marginal discrepancy.

Keywords

References

  1. Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000;83:461-87.
  2. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404. https://doi.org/10.1016/S0022-3913(07)60124-3
  3. Baig MR, Tan KB, Nicholls JI. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J Prosthet Dent 2010;104:216-27. https://doi.org/10.1016/S0022-3913(10)60128-X
  4. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. Br Dent J 2008;204:505-11. https://doi.org/10.1038/sj.bdj.2008.350
  5. Luthardt RG, Holzhuter M, Sandkuhl O, Herold V, Schnapp JD, Kuhlisch E, Walter M. Reliability and properties of ground Y-TZP-zirconia ceramics. J Dent Res 2002;81:487-91. https://doi.org/10.1177/154405910208100711
  6. Martinez-Rus F, Suarez MJ, Rivera B, Pradies G. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prosthet Dent 2011;105:108-14. https://doi.org/10.1016/S0022-3913(11)60009-7
  7. Kohorst P, Junghanns J, Dittmer MP, Borchers L, Stiesch M. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy. Clin Oral Investig 2011;15:527-36. https://doi.org/10.1007/s00784-010-0415-9
  8. Tan K, Pjetursson BE, Lang NP, Chan ES. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 2004;15:654-66. https://doi.org/10.1111/j.1600-0501.2004.01119.x
  9. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 1991;65:357-64. https://doi.org/10.1016/0022-3913(91)90225-L
  10. Tinschert J, Natt G, Hassenpflug S, Spiekermann H. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent 2004;7:25-45.
  11. Molin MK, Karlsson SL, Kristiansen MS. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. Dent Mater 1996;12:245-9. https://doi.org/10.1016/S0109-5641(96)80030-3
  12. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  13. Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil 2014;41:853-74. https://doi.org/10.1111/joor.12205
  14. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  15. Holmes JR, Sulik WD, Holland GA, Bayne SC. Marginal fit of castable ceramic crowns. J Prosthet Dent 1992;67:594-9. https://doi.org/10.1016/0022-3913(92)90153-2
  16. Sorensen JA. A standardized method for determination of crown margin fidelity. J Prosthet Dent 1990;64:18-24. https://doi.org/10.1016/0022-3913(90)90147-5
  17. Moldovan O, Luthardt RG, Corcodel N, Rudolph H. Three-dimensional fit of CAD/CAM-made zirconia copings. Dent Mater 2011;27:1273-8. https://doi.org/10.1016/j.dental.2011.09.006
  18. Falk A, Vult von Steyern P, Fransson H, Thoren MM. Reliability of the impression replica technique. Int J Prosthodont 2015;28:179-80. https://doi.org/10.11607/ijp.4132
  19. Trifkovic B, Budak I, Todorovic A. Application of replica technique and SEM in accuracy measurement of ceramic crowns. Meas Sci Rev 2012;12:90-7.
  20. Grenade C, Mainjot A, Vanheusden A. Fit of single tooth zirconia copings: comparison between various manufacturing processes. J Prosthet Dent 2011;105:249-55. https://doi.org/10.1016/S0022-3913(11)60040-1
  21. Subasi G, Ozturk N, Inan O, Bozogullari N. Evaluation of marginal fit of two all-ceramic copings with two finish lines. Eur J Dent 2012;6:163-8.
  22. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74.
  23. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 1991;65:357-64. https://doi.org/10.1016/0022-3913(91)90225-L
  24. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113:174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  25. Souza RO, Ozcan M, Pavanelli CA, Buso L, Lombardo GH, Michida SM, Mesquita AM, Bottino MA. Marginal and internal discrepancies related to margin design of ceramic crowns fabricated by a CAD/CAM system. J Prosthodont 2012;21:94-100. https://doi.org/10.1111/j.1532-849X.2011.00793.x
  26. Borba M, Cesar PF, Griggs JA, Della Bona A. Adaptation of all-ceramic fixed partial dentures. Dent Mater 2011;27:1119-26. https://doi.org/10.1016/j.dental.2011.08.004
  27. Ucar Y, Akova T, Akyil MS, Brantley WA. Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: laser-sintered Co-Cr crowns. J Prosthet Dent 2009;102:253-9. https://doi.org/10.1016/S0022-3913(09)60165-7
  28. Pelekanos S, Koumanou M, Koutayas SO, Zinelis S, Eliades G. Micro-CT evaluation of the marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 2009;4:278-92.
  29. Kokubo Y, Nagayama Y, Tsumita M, Ohkubo C, Fukushima S, Vult von Steyern P. Clinical marginal and internal gaps of In-Ceram crowns fabricated using the GN-I system. J Oral Rehabil 2005;32:753-8. https://doi.org/10.1111/j.1365-2842.2005.01506.x
  30. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  31. Nakamura T, Dei N, Kojima T, Wakabayashi K. Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crowns. Int J Prosthodont 2003;16:244-8.
  32. May KB, Russell MM, Razzoog ME, Lang BR. Precision of fit: the Procera AllCeram crown. J Prosthet Dent 1998;80:394-404. https://doi.org/10.1016/S0022-3913(98)70002-2
  33. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont 2004;17:59-64.
  34. Laurent M, Scheer P, Dejou J, Laborde G. Clinical evaluation of the marginal fit of cast crowns-validation of the silicone replica method. J Oral Rehabil 2008;35:116-22. https://doi.org/10.1111/j.1365-2842.2003.01203.x
  35. Fransson B, Oilo G, Gjeitanger R. The fit of metal-ceramic crowns, a clinical study. Dent Mater 1985;1:197-9. https://doi.org/10.1016/S0109-5641(85)80019-1
  36. Boening KW, Walter MH, Reppel PD. Non-cast titanium restorations in fixed prosthodontics. J Oral Rehabil 1992;19:281-7. https://doi.org/10.1111/j.1365-2842.1992.tb01103.x
  37. Balkaya MC, Cinar A, Pamuk S. Influence of firing cycles on the margin distortion of 3 all-ceramic crown systems. J Prosthet Dent 2005;93:346-55. https://doi.org/10.1016/j.prosdent.2005.02.003
  38. Gemalmaz D, Alkumru HN. Marginal fit changes during porcelain firing cycles. J Prosthet Dent 1995;73:49-54. https://doi.org/10.1016/S0022-3913(05)80272-0
  39. Castellani D, Baccetti T, Clauser C, Bernardini UD. Thermal distortion of different materials in crown construction. J Prosthet Dent 1994;72:360-6. https://doi.org/10.1016/0022-3913(94)90554-1
  40. Hung SH, Hung KS, Eick JD, Chappell RP. Marginal fit of porcelain-fused-to-metal and two types of ceramic crown. J Prosthet Dent 1990;63:26-31. https://doi.org/10.1016/0022-3913(90)90260-J
  41. Shearer B, Gough MB, Setchell DJ. Influence of marginal configuration and porcelain addition on the fit of In-Ceram crowns. Biomaterials 1996;17:1891-5. https://doi.org/10.1016/0142-9612(95)00302-9
  42. Song TJ. Marginal fit of the auro galvano crown system made using the electroforming technique. Master thesis, Seoul, Korea; Seoul National University, 2004.
  43. Torabi K, Vojdani M, Giti R, Taghva M, Pardis S. The effect of various veneering techniques on the marginal fit of zirconia copings. J Adv Prosthodont 2015;7:233-9. https://doi.org/10.4047/jap.2015.7.3.233
  44. Weaver JD, Johnson GH, Bales DJ. Marginal adaptation of castable ceramic crowns. J Prosthet Dent 1991;66:747-53. https://doi.org/10.1016/0022-3913(91)90408-O

Cited by

  1. Alternative Method to Evaluate the Adaptation of Implant-Supported Multi-Unit Prosthetic Frameworks pp.1059941X, 2019, https://doi.org/10.1111/jopr.12644
  2. Influence of Material Selection on the Marginal Accuracy of CAD/CAM-Fabricated Metal- and All-Ceramic Single Crown Copings vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/2143906
  3. The Conometric Concept: A Two-Year Follow-Up of Fixed Partial CEREC Restorations Supported By Cone-In-Cone Abutments pp.1059941X, 2018, https://doi.org/10.1111/jopr.12962
  4. Comparison between direct chairside and digitally fabricated temporary crowns pp.1881-1361, 2018, https://doi.org/10.4012/dmj.2017-315
  5. Digital microscopic evaluation of vertical marginal discrepancies of CAD/CAM fabricated zirconia cores vol.0, pp.0, 2018, https://doi.org/10.1515/bmt-2017-0234
  6. A Comparative Study of the Fitness and Trueness of a Three-Unit Fixed Dental Prosthesis Fabricated Using Two Digital Workflows vol.9, pp.14, 2016, https://doi.org/10.3390/app9142778
  7. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness vol.12, pp.5, 2016, https://doi.org/10.4047/jap.2020.12.5.283
  8. Fit of tooth‐supported zirconia single crowns—A systematic review of the literature vol.6, pp.6, 2016, https://doi.org/10.1002/cre2.323
  9. Effect of cementation and aging on the marginal fit of veneered and monolithic zirconia and metal-ceramic CAD-CAM crowns vol.125, pp.2, 2016, https://doi.org/10.1016/j.prosdent.2020.06.036
  10. Application of multi-directional forged titanium for prosthetic crown fabrication by CAD/CAM vol.40, pp.4, 2016, https://doi.org/10.4012/dmj.2020-351