DOI QR코드

DOI QR Code

Effects of Caffeic Acid, Myristicin and Rosemarinic Acid on the Gene Expression and Production of Airway MUC5AC Mucin

  • Lee, Hyun Jae (Department of Health Management, Sahmyook University) ;
  • Lee, Kang Ro (Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University) ;
  • Hong, Jang-Hee (Department of Pharmacology, School of Medicine Chungnam National University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine Chungnam National University)
  • Received : 2016.07.26
  • Accepted : 2016.09.09
  • Published : 2016.12.31

Abstract

Perilla frutescens was empirically used for controlling airway inflammatory diseases in folk medicine. We investigated whether caffeic acid, myristicin and rosemarinic acid derived from Perilla frutescens significantly affect the gene expression and production of mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with caffeic acid, myristicin or rosemarinic acid for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The MUC5AC mucin gene expression and production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Additionally, we examined whether caffeic acid, myristicin or rosemarinic acid affects MUC5AC mucin production indued by epidermal growth factor (EGF) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), the other two stimulators of production of airway mucin. The results were as follows: (1) Caffeic acid, myristicin and rosemarinic acid inhibited the gene expression and production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (2) Among the three compounds derived from Perilla frutescens, only rosemarinic acid inhibited the production of MUC5AC mucin induced by EGF or $TNF-{\alpha}$, the other two stimulators of production of airway mucin. These results suggest that rosemarinic acid derived from Perilla frutescens can regulate the production and gene expression of mucin, by directly acting on airway epithelial cells and, at least in part, explains the traditional use of Perilla frutescens as remedies for diverse inflammatory pulmonary diseases.

Keywords

References

  1. Voynow, J. A.; Rubin, B.K. Chest 2009, 135, 505-512. https://doi.org/10.1378/chest.08-0412
  2. Heo, H. J.; Kim, C.; Lee, H. J.; Kim, Y. S.; Kang, S. S.; Seo, U. K.; Kim, Y. H.; Park, Y. C.; Seok, J. H.; Lee, C. J. Phytother. Res. 2007, 21, 462-465. https://doi.org/10.1002/ptr.2102
  3. Heo, H. J.; Lee, S. Y.; Lee, M. N.; Lee, H. J.; Seok, J. H.; Lee, C. J. Phytother. Res. 2009, 23, 1458-1461. https://doi.org/10.1002/ptr.2801
  4. Lee, H. J.; Lee, S. Y.; Lee, M. N.; Kim, J. H.; Chang, G.T.; Seok, J. H.; Lee, C. J. Phytother. Res. 2011, 25, 1196-1200. https://doi.org/10.1002/ptr.3362
  5. Jang, I. M. Treatise on asian herbal medicines; Haksul-pyunsu-kwan in Research institute of natural products of Seoul National University: Korea, 2003, p 2847.
  6. Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C. M.; Serra, A. T.; Pinto, R.; Freitas, M.; Fernandes, E.; Silva-Lima, B.; Mota-Filipe, H.; Sepodes, B. Basic Clin. Pharmacol. Toxicol. 2015, 116, 398-413. https://doi.org/10.1111/bcpt.12335
  7. Lee, J. Y.; Park, W. Molecules 2011, 16, 7132-7142. https://doi.org/10.3390/molecules16087132
  8. Genaro-Mattos, T. C.; Maurício, A. Q.; Rettori, D.; Alonso, A.; Hermes-Lima, M. PLoS One 2015, 10, e0129963. https://doi.org/10.1371/journal.pone.0129963
  9. Coelho, V. R.; Vieira, C. G.; de Souza, L. P.; Moysés, F.; Basso, C.; Papke, D. K.; Pires, T. R.; Siqueira, I. R.; Picada, J. N.; Pereira, P. Life Sci. 2015, 122, 65-71. https://doi.org/10.1016/j.lfs.2014.11.009
  10. Rogers, D. F.; Barnes, P. J. Ann. Med. 2006, 38, 116-125. https://doi.org/10.1080/07853890600585795
  11. Li, J. D.; Dohrman, A. F.; Gallup, M.; Miyata, S.; Gum, J. R.; Kim, Y. S.; Nadel, J. A.; Prince, A.; Basbaum, C. B. Proc. Natl. Acad. Sci. USA 1997. 94, 967-972. https://doi.org/10.1073/pnas.94.3.967
  12. Takeyama, K.; Dabbagh, K.; Shim, J. J.; Dao-Pick, T.; Ueki, I. F.; Nadel, J. A. J. Immunol. 2000, 164, 1546-1552. https://doi.org/10.4049/jimmunol.164.3.1546
  13. Shao, M. X.; Ueki, I. F.; Nadel, J. A. Proc. Natl. Acad. Sci. USA 2003, 100, 11618-11623. https://doi.org/10.1073/pnas.1534804100
  14. Hong, D. H.; Petrovics, G.; Anderson, W. B.; Forstner, J.; Forstner, G. Am. J. Physiol. 1999, 277, G1041-G1047.
  15. Hewson, C. A.; Edbrooke, M. R.; Johnston, S. L. J. Mol. Biol. 2004, 344, 683-695. https://doi.org/10.1016/j.jmb.2004.09.059
  16. Park, S. J.; Kang, S. Y.; Kim, N. S.; Kim, H. M. Immunopharmacol. Immunotoxicol. 2002, 24, 211-226. https://doi.org/10.1081/IPH-120003751
  17. Kim, K. D.; Lee, H. J.; Lim, S. P.; Sikder, A.; Lee, S. Y.; Lee, C. J. Phytother. Res. 2012, 26, 1301-1307. https://doi.org/10.1002/ptr.3727
  18. Fischer, B. M.; Rochelle, L. G.; Voynow, J. A., Akley, N. J.; Adler, K. B. Am. J. Respir. Cell Mol. Biol. 1999, 20, 413-422. https://doi.org/10.1165/ajrcmb.20.3.3393
  19. Song, K. S.; Lee, W. J.; Chung, K. C.; Koo, J. S.; Yang, E. J.; Choi, J. Y.; Yoon, J. H. J. Biol. Chem. 2003, 278, 23243-23250. https://doi.org/10.1074/jbc.M300096200
  20. Takeyama, K.; Dabbagh, K.; Lee, H. M.; Agustí, C.; Lausier, J. A.; Ueki, I. F.; Grattan, K. M.; Nadel, J. A. Proc. Natl. Acad. Sci. USA 1999, 96, 3081-3086. https://doi.org/10.1073/pnas.96.6.3081
  21. Cohn, L.; Whittaker, L.; Niu, N.; Homer, R. J. Novartis. Found. Symp. 2002, 248, 201-213.

Cited by

  1. Pharmacological and Therapeutic Potential of Myristicin: A Literature Review vol.26, pp.19, 2016, https://doi.org/10.3390/molecules26195914