References
- Asdrubali, F., Pispola, G., 2007. Properties of transparent sound-absorbing panels for use in noise barriers. J. Acoust. Soc. Am. 121 (1), 214. https://doi.org/10.1121/1.2395916
- Cvetkovic, S., Prascevic, R., Cvetkovic, S., Sound, R.P., 1994. Sound intensity as a function of sound insulation partition. J. De Physique 4.
- Dym, C.L., Lang, M.A., 1974. Transmission of sound through sandwich panels. J. Acoust. Soc. Am. 56, 1523-1532. https://doi.org/10.1121/1.1903474
- Fahy, Frank J., Gardonio, Paolo, 2007. Sound and Structural Vibration. Academic Pr.
- Ford, R.D., Lord, P., Walker, A.W., 1967. Sound transmission through sandwich constructions. J. Sound Vib. 5 (1), 9-21. https://doi.org/10.1016/0022-460X(67)90173-3
- Fuchs, H.V., Zha, X., Drotleff, H.D., 2001. Creating low-noise environments in communication rooms. Appl. Acoust. 62, 1375-1396. https://doi.org/10.1016/S0003-682X(01)00008-1
- Gibson, Lorna J., Ashby, Michael F., 1997. Cellular Solids: Structure and Properties, second ed. Cambridge University Press (Chapter 4).
- ISO 15186-1:2000, Acoustics - Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity - Part 1: Laboratory Measurements.
- ISO 717-1:2013, Acoustics - Rating of Sound Insulation in Buildings and of Building Elements - Part 1: Airborne Sound Insulation.
- Jacobsen, F., De Bree, H.E., 2005. Measurement of sound intensity: pu probes versus pp probes. Proc. NOVEM 1-10.
- Kang, H.-J., Ih, J.-G., Kim, J.-S., Kim, H.-S., 2000. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy. J. Acoust. Soc. Am. 107 (3), 1413. https://doi.org/10.1121/1.428428
- Lin, H.-J., Wang, C.-N., Kuo, Y.-M., 2007. Sound transmission loss across specially orthotropic laminates. Appl. Acoust. 68 (10), 1177-1191. https://doi.org/10.1016/j.apacoust.2006.06.007
- Maa, D.Y., 1975. Theory and design of microperforated-panel sound absorbing construction. Sci. Sin. XVIII, 55-71.
- Moore, J., 1975. Sound Transmission Loss Characteristics of Three Layer Composite Wall Constructions. Massachusetts Institute of Technology.
- Moore, J.A., Lyon, R.H., 1991. Sound transmission loss characteristics of sandwich panel constructions. Acoust. Soc. Am. 89 (May).
- NORSOK Standard S-002 Rev.4, 2004. Working Environment, Annex A
- Takahashi, D., 2002. Flexural vibration of perforated plates and porous elastic materials under acoustic loading. J. Acoust. Soc. Am. 112, 1456-1464. https://doi.org/10.1121/1.1497624
- Toyoda, M., Takahashi, D., 2005. Reduction of acoustic radiation by impedance control with a perforated absorber system. J. Sound Vib. 286 (3), 601-614. https://doi.org/10.1016/j.jsv.2004.10.011
- Toyoda, M., Takahashi, D., 2008. Sound transmission through a microperforated-panel structure with subdivided air cavities. J. Acoust. Soc. Am. 124 (6), 3594-3603. https://doi.org/10.1121/1.3001711
- Toyoda, M., Tanaka, M., Takahashi, D., 2007. Reduction of acoustic radiation by perforated board and honeycomb layer systems. Appl. Acoust. 68 (1), 71-85. https://doi.org/10.1016/j.apacoust.2005.11.011
- UK-HSE, Noise and Vibration, Offshore Technology Report 2001/068.
- Wu, M.-Q., 1997. Micro-perforated panels for duct silencing. Noise Control Eng. J. 45, 69-77. https://doi.org/10.3397/1.2828428
- Zha, X., Fuchs, H.V., Drotleff, H.D., 2002. Improving the acoustic working conditions for musicians in small spaces. Appl. Acoust. 63, 203-221. https://doi.org/10.1016/S0003-682X(01)00024-X
Cited by
- Investigating the Effect of Dimension Parameters on Sound Transmission Losses in Nomex Honeycomb Sandwich vol.10, pp.9, 2016, https://doi.org/10.3390/app10093109