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Abstract 
 

Despite the abundant literature in the field, there is still the need to find a time-efficient, 
highly accurate, easy to deploy and robust localization algorithm for real use. The 
algorithm only involves minimal human intervention. We propose an enhanced Received 
Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, 
called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the 
multiple phenomena affecting the propagation of radio signals, RSSI measurements show 
fluctuations that hinder the utilization of straightforward positioning mechanisms from 
widely known propagation loss models. Instead, DWELT uses data processing of raw 
RSSI values and applies a weighted posterior-probabilistic evolution for quick 
convergence of localization and tracking. In this paper, we present the first 
implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), 
and the first step towards a more generic implementation. Simulations and experiments 
show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%. 
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1. Introduction 

The capability of portable devices (e.g. cellphones, smartwatches, tablets, etc.) to 
provide location information enables a plethora of new services and applications, such as 
in-building navigation, traffic control, user/machine tracking, etc. Undoubtedly, these 
services and applications offer numerous benefits for consumers, retailers, enterprises, 
and service providers. The ability to produce accurate location information of moving 
objects is, however, difficult to achieve, especially indoors. Lacking GPS coverage, 
Wi-Fi and other wireless communications technologies have become the basis of many 
indoor positioning mechanisms [1]. Furthermore, at the end of 2014, near 10 billion 
Wi-Fi devices had been sold worldwide and about 4.5 billion Wi-Fi products are in use 
today [2], it is expected to surpass 15 billion by the end of 2016. With an installed base of 
more than 6.8 billion devices and more than 50 million public hotspots worldwide, Wi-Fi 
has become almost ubiquitous. Said ubiquity shortens and simplifies the development of 
new location-based applications using Wi-Fi, as compared to other technologies. During 
the last decade, considerable research was conducted on Wi-Fi-based positioning, but the 
poor accuracy typically obtained was clearly unsatisfactory for many use cases. In this 
sense, the IEEE P802.11 TGaz1 is currently studying new amendments to enhance 
accuracy and scalability of positioning for Wi-Fi equipment. Aligned with those 
objectives, in this paper we present Dynamic Weighted Evolution for Location Tracking 
(DWELT); an enhanced mechanism intended to provide accurate positioning of Wi-Fi 
devices, leveraging the ubiquity of Wi-Fi infrastructure in many scenarios. As shown 
throughout this paper, DWELT is simple, fast, and accurate. 
  Different Wi-Fi-based positioning schemes exist in the literature [3]. Angle of Arrival 
(AoA) techniques determine the direction of propagation of the node’s transmission 
incident on an antenna array by measuring the Time Difference of Arrival (TDoA) at 
each antenna. TDoA itself and other Time of Flight (ToF) solutions measure the time it 
takes for a radio signal to travel from a transmitter to a distant receiver antenna. Based on 
that, the distance can be directly calculated from those samples as signals travel at a 
known speed. Alternatively, RSSI-based approaches, such as fingerprinting or signal 
propagation model (SPM) schemes are based on the measurement of received signal 
power. In general, AoA and ToF techniques ask for complex hardware, or strict time 
synchronization, which is impractical in many applications. RSSI-based schemes do not 
require any special or sophisticated hardware and, therefore, can be easily implemented 
given that most off-the-shelf Wi-Fi devices report RSSI from in-range APs, and 
commercial APs can easily keep track of the power received from multiple client stations. 
  Fingerprint-based algorithms include two phases: an off-line training phase and the 
on-line pattern-matching phase. During the first phase, the area of interest is thoroughly 
surveyed to build a database with as many digital fingerprints as possible (e.g. number of 
Wi-Fi APs and the power received from each of those APs at every possible location). 
However, this off-line training is costly [4] and needs to be repeated frequently to 

1 http://www.ieee802.org/11/Reports/tgaz_update.htm 
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accommodate changes in the environment (replacement of APs, changes in the structure 
of the building or even changes in the furniture, etc.). In order to speed up this phase, 
Tang et al. [5] propose to use unmanned ground vehicles while, in [6], authors use 
customized Wi-Fi APs along with Wi-Fi-based sensor anchors strategically placed to 
automatically calibrate and update the RSSI database. Mo et al. [7] propose a localization 
technique that is able to build and update radio fingerprints. Besides, Huang et al. [8] and 
Bruno et al. [9] have well studied the Simultaneous Localization and Mapping (SLAM) 
scheme based on Wi-Fi devices to reduce runtime complexity and improve location 
accuracy. In addition, Wang et al. [10] propose a framework for unsupervised indoor 
localization called UnLoc, and try to achieve the tradeoff between accuracy and 
calibration overhead. Furthermore, Lim et al. [11] build an indoor Wi-Fi localization 
system with smart antennas, which avoids the use of the off-line training phase, to 
triangulate the target. 

Unlike many fingerprint methods, where the target’s location is derived from the 
measurements provided by all available sensors, in [12], the Fuzzy C-Means clustering 
algorithm is utilized to focus only on a certain cluster of fingerprints, achieving a 
time-efficient localization with good resolution. A similar approach is proposed in [13], 
where the authors adopt a K-means clustering to compare measured RSSI values for a 
coarse positioning and adopt Genetic Algorithm to improve precision. Moreover, Shon et 
al. [14], propose a cluster-based multidimensional scaling (MDS) for range-free 
localization and yielded a significant accuracy improvement. Gogolak et al. [15] take 
advantage of the learning of the neural network model based on preprocessed (mean, 
median, standard deviation) RSSI values, while the system is trained with mean RSSI 
values. More recent works combine RSSI measurements with other data available at the 
target device (e.g. built-in compass, motion sensors, etc. in smartphones or other wearable 
devices [16], [17]). 

On the other hand, SPM-based methods apply a propagation path loss model to derive 
the distance of a transmitter from the power received. However, received power can be 
highly variable in a dynamic scenario, since radio signals undergo many physical 
phenomena as they propagate through obstacles or reflect off static (or moving) objects. 
All these phenomena introduce noise in power measurements, which deviate from the 
predictions of the propagation models. In response to the fluctuation of the determined 
RSSI values, the theory of maximum entropy is introduced to eliminate the Gaussian 
noise in [18]. Besides, Huang et al. [19] develop a real-time RFID indoor positioning 
based on Kalman-filter to mitigate the drift of RSSI values. It is worth mentioning that 
Solhjoo and Tinati [20] try to find out the relationship between RSSI values and signal 
propagation distance among different direction of APs, and propose a non-circular signal 
propagation model. In [21], Guo et al. develop an Exponential-Rayleigh (ER) model, 
which includes two parts, the large-scale part and the small-scale part, to mitigate the 
interferences caused by the multi-path when the signal is propagating. Similarly, in [22], 
Lim et al. investigate a Dual Log Path Loss Model that includes two Log-curves (one is 
for the distances under 5m, and the other for distances between 5m and 10m). 
  DWELT is an SPM-based scheme, which includes an adaptive propagation loss model 
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and a particle-filtering algorithm; both mechanisms intend to overcome the intrinsic 
limitations of SPM schemes. 

2. Description of DWELT 

In this paper, we target a quick, efficient, and accurate localization implementation, 
which does not require any centralized intelligence. The implementation is generally 
independent of the specific hardware or application situations, and needs no prior 
information harvesting.  

 
Fig. 1. Illustration of DWELT localization process (example with N = 20 in a 1D scenario) 

 
  To ease the understanding of DWELT algorithm, we assume a 1D scenario as depicted 
in Fig. 1, which is similar to the Wi-Fi devices deployed in a long runnel or corridor. In 
this case, Wi-Fi APs and the target device are in a line. N  refers to the total numbers of 
random locations, 0[ ]w i  refers to the initial weight of the thi  random location. The 
distance between any two adjacent APs (Dist) is known, and the target device is located 
between any two APs (at distance 1xd  from AP1 and 2xd from AP2) 2. For such 

2 In a real scenario, the different elements can be placed at different heights, in which case, basic trigonometric rules 
can be applied to compensate for the possible loss of precision. 
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scenario DWELT models the localization problem as a stochastic process in which the 
estimation of location is represented as probability distributions. More importantly, 
DWELT applies a weighted posterior-probabilistic evolution for quick convergence of 
localization, as detailed in the following. 

2.1 Path loss model 

Logically, the pivotal component of an SPM-based positioning method is to accurately 
estimate the path loss in the selected environment. In practice, however, no analytical 
model exists to provide accurate predictions for all possible environments. This is 
particularly true for the type of environments of our interest, where the radio waves are 
affected by the working frequency, the roughness and electrical conductivity of walls, 
geometry, etc. Most indoor propagation models are based on the breakpoint model [23] 
(also known as X-slope model), where the signal attenuation is characterized by a 
different exponent on several (X) discrete intervals from the transmitter. In our work, we 
assume distances of less than 100m and, similar to [24], we adopt a two-slope path loss 
model, represented in (1), which provides an adequate accuracy at low computational 
cost3. 

0
0

10 log( )x
dx

dP P N
d ση= − +       (1) 

where, 

0d  refers to the breakpoint distance (in m); 0d is a tunable parameter depending on 
the environment. 

xd  is the distance from the transmitter ( 0xd d> ). 

0P  refers to the RSSI (in dBm) measured at 0d . 

dxP  refers to the RSSI (in dBm) measured at xd . 
η  is the path loss exponent applicable after the breakpoint. 
Nσ  represents the noise power as a Gaussian random variable with zero mean and σ  

standard deviation. 
Similar to [25], in order to apply the algorithm in different environments without a 

costly off-line training phase, DWELT performs a real-time estimation of the path loss 
exponent (η ) in the signal propagation model shown in (1). 

2.1.1 Estimation of path loss exponent 

For the sake of simplicity we temporarily assume noise power ( Nσ ) to be 0dBm, 

3 The propagation loss model can be sophisticated to better reflect the particularities of other scenarios (e.g. add losses 
due to walls/floors) without affecting other components of DWELT. 
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breakpoint distance ( 0d ) to be 1m (typical choice in indoor scenarios). From equation (1) 
the distance xd  from a transmitter is given by 

0
1010

dxP P

xd η
−

=        (2) 
If RSSI1 corresponds to the average RSSI with which AP1’s transmissions are 

measured at the target location (see Fig. 1) and RSSI2 corresponds to AP2, the distance 
between AP1 and AP2 (Dist) is approximated by: 

0 1 0 2
10 1010 10

P RSSI P RSSI

Dist d η η
− −

≈ = +      (3) 
Logically, d should be as close to Dist as possible and, to this aim, we adjust η  from 

a to b in a step of ∆ . The chosen η  is the value that minimizes d Dist− . Parameters 
a, b and ∆  are left as an implementation choice; a and b should cover the range of 
expected values for the path loss exponent of the selected environment (typically between 
2 and 5 for common wireless environments) and ∆  depends on the tradeoff between 
resolution and computation time. 

2.2. Location estimation 

With accurate estimation of the path loss exponent, distance estimations derived from 
RSSI are still unreliable due to the diverse phenomena affecting propagation. Those 
phenomena, especially in the presence of moving objects, cause RSSI measurements to 
vary in time (even for a fixed location) and make the RSSI vs. distance relationship differ 
from the expected monotonically decreasing behavior. Hence, we process raw RSSI data 
through a filtering algorithm, as illustrated in Fig. 1. 

2.2.1 Initialization 

First, we generate a set of N random locations with uniform probabilities and store 
them in the array 0[ ]d N . The array [ ]td N  represents the set of possible distances from 
a given AP1 over the line between AP1 and AP2 (i.e. possible values for 1xd  in Fig. 1), 
at time t. Then, we set a weight for each of those locations and store them in the 
array [ ]tw N . In this initialization, all N locations have the same weight 
of 0[ ] 1/ , 1, 2,...,w i N i N= = . 

2.2.2 Weight update 

Assume maxv  is the maximum velocity of the targeted object (e.g. the walking speed 
of human beings in indoor environments is typically less than 2m/s). The orientation of 
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the object, represented by o , can be either +1 (i.e., moving from AP1 towards AP2) or 
-1 (i.e., from AP2 to AP1). The time interval between consecutive iterations is denoted as 
δ . At each iteration, every possible location in td  is updated by  

1 max[ ] [ ]t td i d i v oδ−= + ⋅ ⋅


      (4) 
Then, we update the corresponding weights using Eqs. (5) (6) (7), where [ ]tw i  

represents the probability according to a normal distribution, [ ]td i  is the actual location, 
given the measured RSSI (RSSI1 and RSSI2) and the expected RSSI at [ ]td i , and 1APw , 

2APw  represent the portion of the weight that measures the probability of a location 
according to its distance from AP1 and AP2, respectively. Note that weights [ ]tw i  are 

normalized so that
1

[ ] 1N
ti

w i
=

=∑ . 

1 2[ ] ; 1, 2,...,t AP APw i w w i N= + =     (5) 
2

1 0
2

( ( 10 log( [ ] 0 )))
2

1
1
2

tRSSI P d i

APw e
η

σ

σ π

− − −
−

=     (6) 

2
2 0

2
( ( 10 log( [ ] )))

2
2

1
2

tRSSI P Dist d i

APw e
η

σ

σ π

− − −
−

=     (7) 

2.2.3 Resampling 

Once the array of weights has been updated, we can see that some locations stemmed 
from (4) are very unlikely (i.e. have a small weight, less than α ). Before the next 
iteration, we remove some of those outliers. Due to unpredictable variations of RSSI, the 
detection of invalid locations may not be trivial; a simple truncation selection (remove a 
fixed portion of the weakest candidates) may end up, for example, removing good choices 
that, due to a temporary fading, seemed unlikely. Instead, we follow a fitness proportional 
selection, where those locations with lower weight are selected for removal with higher 
probability; in this way, some weaker solutions may survive the selection process, which 
could prove useful in future iterations. The resampling process is finalized by replacing 
those removed locations with new random values uniformly distributed within a small 
area (θ ) around the last estimated position, ˆ

td . 

2.2.4 Localization results 

After completing all the steps for a given number of iterations, we compute the 
weighted average of all the possible locations and provide this value as the estimated 
location of the targeted object at time t. This is shown in (8), as the dot product t tw d⋅ . 
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1

ˆ [ ] [ ]
N

t t t
i

d w i d i
=

=∑        (8) 

As shown in Algorithm 1, the DWELT algorithm starts at the online real-time 
estimation of path loss exponent, and continues to initialization process. After that, 
DWELT continues to update the weights of particles in accordance with up-to-date RSSI 
readings. In order to remove unlikely locations and not to remove good choices wrongly 
in case of a temporary fading, we adopt a fitness proportional selection as resample 
algorithm. Finally, the algorithm will decide the flow direction according to the 
convergence of DWELT and the maximum iterations. Note that the path loss exponent 
will be updated (estimated in real time) before every localization process. 
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3. Performance of DWELT 
The previous section described DWELT through an initial and simplified 1D approach. 
The 1D approach can be feasibly extended to provide 2D positioning scenario in more 
generic environments (e.g. for guided shopping, navigation in office buildings, 
convention centers, airports, etc.). In the 2D adaptation of DWELT, the randomly 
generated positions are distributed over a plane instead of a line and are then weighted 
according to the RSSI measured from three APs or more. 
  This section presents the evaluation of DWELT and the influence of different design 
choices, firstly, by means of Matlab simulations and, secondly, through measurements 
with a real testbed deployed in different small scenarios.  

3.1 Simulation results 

As depicted in Fig. 1, we assume APs are deployed every Dist over a straight line, and 
the exact location of each AP is known in advance. The target, which is randomly placed 
at the beginning of the simulation, is provisioned with noisy RSSI measurements from all 
surrounding APs, according to (1). Then, for a 1D scenario (APs and target device in the 
same line), we identify the two APs providing the strongest signals as AP1 and AP2. In a 
real deployment, AP1 and AP2 would be identified by their MAC address (or unique 
BSSID).  

In the simulation, we assume a maximum pedestrian speed max 2 /v m s= (the mean 
walking speed of pedestrian is around 1.34m/s [26]); the moving direction of every 
particle generates randomly (either +1 or -1) at every iteration; the determined RSSI value 
at the reference distance 0d  (1m) is 0 35P dBm= − [25] (the average of hundreds of 
samples); the path loss exponent η  is adapted with values from 2 to 5 [25] [27] in steps 
of 0.03 (a fixed value of 3.5 is used to generate RSSI samples); the distance between 
every two adjacent APs is 60Dist m= , similar to [25]; the time interval between 
consecutive iterations is 0.05sδ = (the computation time for one iteration loop is about 
0.05s); and the noise power is 4dB, similar to [27], see Table 1. 

 
Table 1. DWELT Configuration Parameters 

max ( / )v m s  0 ( )P dBm  η  ( )Dist m  ( )sδ  ( )N dBσ  
2 -35 2~5, 0.03 60 0.05 4 

 

In order to show the convergence of the proposed algorithm, the simulation result is 
demonstrated in Fig. 2. And the vertical coordinate of this figure represents the distance 
between the target and AP1. As we can see from Fig. 2, the positioning precision for 50 
iterations (Platform: Matlab, CPU: 1.8GHz, Elapsed Time: 68ms) can be 0.9m stably. We 
can draw a conclusion that, the proposed algorithm is an evolutionary algorithm which is 
based on dynamic enhancement, it can track and locate the target through accurately and 
requires short calculation time.  
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After that, we conduct more simulations to see how the number of particles (N) and 
noise power ( Nσ ) affect the localization results. For that, we assume the maximum 
number of iterations (NoI) is 50, and the other configuration parameters are the same as 
Table 1. 
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Fig. 2. Simulation and evaluation for positioning and tracking 
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Fig. 3. Simulated localization error with noisy RSSI measurements for 100 and 500 particles 
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Fig. 3 shows that the 1D resolution of DWELT varies, on average, from 20cm to 2.0m, 
in the worst case. Logically, as we increase the noise in RSSI measurements, we witness 
a noticeable loss of precision. That loss of precision can be mitigated by increasing the 
number of particles (N) of the filtering algorithm. In this regard, note that Fig. 3 shows 
localization errors for two cases: 500N = and 100N = . A larger number of candidate 
positions provide an improved accuracy (above 1m, in the worst case) at the cost of an 
increased computation time. Note that, in typical indoor WLAN scenarios, the standard 
deviation of Nσ  is between 3 and 6dB [28], resulting in Nσ  below 4dB for 50% of 
the cases, and below 10dB in 90%. 

 
Fig. 4. Corridor environment 

 
Fig. 5. User interface of DWELT APP 
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3.2 Experimental results 

We conducted several experiments in different scenarios, one of the experimental 
environment is depicted in Fig. 4 (corridor environment). The testbed consists of two 
off-the-shelf Wi-Fi APs (Aigo RS150) and a HUAWEI U95084, an Android-based (Jelly 
Bean 4.1.2) smartphone running DWELT. The configuration parameters are the same as 
in the simulation environment except for the distance between APs, 20Dist m= . The 
experimental setup is similar to Fig. 1, and the user interface of Android APP running 
DWELT algorithm is shown in Fig. 5. 

To evaluate how the real-time estimation of path loss exponent affects the performance 
of localization algorithm, we conducted several experiments in corridor environments, 
shown in Fig. 6. From this figure, we notice that the real-time estimation of path loss 
exponent significantly improves the performance of localization algorithm, we see that 
about 46% improvement can be achieved compared to that without path loss exponent 
estimation process to achieve an accuracy of 2m. 

Localization Error (m)
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Fig. 6. CDF of localization error with/without real-time path loss exponent estimation 

3.2.1 Enhanced resample/weighted strategy 

  The experiments of the first implementation show a poor precision of 1m only in 42% 
of the cases. It is clear that the algorithm needs adjustments to bring it to practice. In this 
regard, the first set of experiments focused on the resampling phase. Initially, the set of 

4 In this platform (Quad-core 1.4GHz CPU, 2GB of RAM), the DWELT application represents a peak of 29% of the 
CPU. 
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new possible locations was generated within the whole range from 0 to Dist. Intuitively, 
reducing the range for new candidate locations allows more precise estimations with 
fewer iterations, in most of the cases. Therefore, we modified DWELT to generate new 
candidate locations within the region between ˆ

td λ−  and ˆ
td λ+ ( ˆ

td  is the most 
recent estimated location). Experimentally we observed that values below 5mλ =  do 
not show any further improvements. 

Another interesting observation was that DWELT provided more accurate results when 
the targeted object was not in close proximity of any of the reference APs. We realized 
that, near the breakpoint distance, the path loss model fails to provide accurate RSSI 
predictions, while it is more reliable in the far-field. Accordingly, we evaluated different 
strategies intended to overcome that significant limitation of the model; giving more 
relevance to the RSSI of the farthest AP was identified as the best approach. In 
consequence, the weight distribution shown in (5) is slightly modified so that, when the 
targeted object estimated location is closer to AP1 (less than / 4Dist ), we give 50% 
added weight to RSSI2, and vice versa. 

Localization Error (m)
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Fig. 7. CDF of localization error with/without enhanced resample/weighted algorithm 

 
As shown in Fig.7, the localization performance is improved significantly with 

enhanced resample/weighted algorithm. It achieves an accuracy of 1m at 81%, of 2m at 
more than 90%. 

After implementing the enhanced resample and weighted strategies, DWELT was 
tested in three different scenarios: an indoor parking lot, a crowded shopping mall and a 
long corridor, and the distance between APs is 20m. In Table 2, the average localization 
errors of 3 different scenarios are less than one meter, and the precision of DWELT 
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shows good robust. More importantly, the average localization error and maximum error 
of DWELT respectively fall by 55.4% and 5.1% compared with SLAM [5] [8] [9] 
algorithm, see in Table 3, Fig. 8. After that, Fig. 9 shows the CDF of the localization 
error in those three scenarios; the 90th percentile varies between 1.4m (corridor) and 2m 
(parking lot). 
 

Table 2. Localization error of 3 different scenarios 
 Corridor Mall Parking lot 

The average error (m) 0.6656 0.9430 0.9560 
The max error (m) 3.1916 5.0537 3.8862 

 
Table 3. Localization error of 2 different methods 

 SLAM DWELT 
The average error (m) 1.9313 0.8608 

The max error (m) 5.3212 5.0537 
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Fig. 8. CDF of 2 different localization methods 
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Localization Error (m)
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Fig. 9. CDF of the measured localization error in three different scenarios 

3.2.2 Performance vs. APs’ distance 

  The resolution of RSSI in Wi-Fi device (typically 1dB) restricts the maximum distance 
between the target object and AP in SPM-based positioning. According to equation (1), to 
meet 1 2 1dx dxP P dB− = , the relationship between 1xd and 2xd must satisfy 

1/30
2 1 110 1.0798x x xd d d= ⋅ = , when the noise powers in two different locations are the 

same and the path loss exponent is 3. Therefore, when 1 20xd m> , it will take a distance 
of at least 1.5955m ( 10.798 xd⋅ ) to compensate the poor resolution of RSSI in Wi-Fi 
device, which will decrease the performance of localization algorithm when the APs’ 
distance increase. As shown in Fig. 10, when Dist=25m, the localization algorithm 
performs worse than that of Dist=20m with enhanced resample/weighted algorithm, and 
achieves a performance more or less the same with the configuration of Dist=20m and 
without enhanced algorithm. DWELT algorithm shows better performance when the 
distance between two adjacent APs is within a reasonable value (around 20 meters). The 
localization errors tend to be higher as the distance increases. Besides, the huge obstacles 
in the line-of-sight of APs will affect the localization accuracy significantly. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016         5437 

Localization Error (m)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dist=20m;

Without enhanced algorithm

Dist=20m;

With enhanced algorithm

Dist=25m;

With enhanced algorithm

 
Fig. 10. CDF of localization error with/without enhanced resample/weighted algorithm 

4. Conclusions and future work 
In this paper, we propose and evaluate the Dynamic Weighted Evolution for Location 
Tracking (DWELT), an enhanced RSSI-based positioning algorithm intended to provide 
accurate indoor positioning of Wi-Fi-based sensors, which leverages the ubiquity of 
Wi-Fi infrastructure in many of such scenarios. DWELT is simple: it does not need any 
extra signaling or cooperation among Wi-Fi APs, and it does not require a prior data 
harvesting phase (e.g. to develop a fingerprint database). DWELT is fast: it shows low 
computational overhead (implemented and tested on Android-based smartphones). 
DWELT is accurate: simulations as well as experimental measurements showed that 
DWELT provides location within 1m precision in more than 81% of the cases, and within 
2m in 95%. 
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