
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, Dec. 2016                                          5231 
Copyright ⓒ2016 KSII 

QoS and SLA Aware Web Service 
Composition in Cloud Environment 

 
Dandan Wang1, Hao Ding1 , Yang Yang1, Zhenqiang Mi1, Li Liu2 and Zenggang Xiong3 
1 School of Computer and Communication Engineering, University of Science and Technology Beijing 

Beijing 100083, China 
[e-mail: wdd_ustb@163.com, haoding8724@gmail.com, yyang@ustb.edu.cn,  mizq@ustb.edu.cn] 

2 School of Automation, University of Science and Technology Beijing 
Beijing 100083, China 

[e-mail: liuli@ustb.edu.cn] 
3School of Computer and Information Science, Hubei Engineering University 

Xiaogan, Hubei 432000, China. 
[e-mail: jkxxzg2003@163.com] 

*Corresponding author: Zhenqiang Mi 
 

Received March 1, 2016; revised May 21, 2016; accepted October 24, 2016;  
published December 31, 2016 

 

 

Abstract 
 

As a service-oriented paradigm, web service composition has obtained great attention from 
both academia and industry, especially in the area of cloud service. Nowadays more and more 
web services providing the same function but different in QoS are available in cloud, so an 
important mission of service composition strategy is to select the optimal composition solution 
according to QoS. Furthermore, the selected composition solution should satisfy the service 
level agreement (SLA) which defines users’ request for the performance of composite service, 
such as price and response time. A composite service is feasible only if its QoS satisfies user’s 
request. In order to obtain composite service with the optimal QoS and avoid SLA violations 
simultaneously, in this paper we first propose a QoS evaluation method which takes the SLA 
satisfaction into account. Then we design a service selection algorithm based on our QoS 
evaluation method. At last, we put forward a parallel running strategy for the proposed 
selection algorithm. The simulation results show that our approach outperforms existing 
approaches in terms of solutions’ optimality and feasibility. Through our running strategy, the 
computation time can be reduced to a large extent. 
 
 
Keywords: Web service; QoS; SLA; service composition; cloud computing 

 
A preliminary version of this paper appeared in CCBD 2015, November 4-6, Shanghai, China. This version 
includes more detailed descriptions of the proposed algorithm, new proposed running strategy and extensive 
simulation studies. This work was supported by the National Science Foundation of China (Grant No. 61272432, 
61370092, 61370132 and 61472033), Hubei Provincial Department of Education Outstanding Youth Scientific 
Innovation Team Support Foundation (T20410) and Fundamental Research Funds for the Central Universities 
(TW201502). 
 
http://dx.doi.org/10.3837/tiis.2016.12.006                                                                                                          ISSN : 1976-7277 



5232                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

1. Introduction 

Web services can be released, discovered and utilized following a set of standards such as 
SOAP, WSDL, and UDDI [1][2]. In addition, they can communicate with each other through 
standard protocols and XML based messages. Given the convenience and reusability, web 
services have become a main mode of cloud application. However, the function of single web 
service is usually too simple to satisfy the user’s complex demand. One solution to solve this 
problem is to integrate independent services into value-added composite service.  

The system architecture for service composition in cloud environment is shown in Fig. 1. 
The cloud architecture includes three layers: software layer, platform layer and infrastructure 
layer. A user sends composition requests to brokers for utilizing composite web services. The 
software layer includes brokers and web services. The brokers, which can be centralized or 
decentralized, manage all services that are offered to users by SaaS providers. Web services 
are registered to brokers by service providers in order to be discovered. The composition 
engine in platform layer communicates with the brokers to discover candidate services 
according to the user’s request. Based on the discovered candidate services, composition 
engine generates an execution plan which satisfies user’s requirements. The infrastructure 
layer controls the actual resource allocation in terms of the execution plan generated by 
platform layer. 
 

 
Fig. 1. System architecture for service composition in cloud environment 

 
For example, in a government cloud for regional emergency response, a large number of 

web services providing different functions, such as geographic information, meteorological 
analysis, experts prognosis and materials distribution are deployed on software layer. When an 
emergency occurs, composition engine in platform layer need to compose these services to a 
complete workflow according to the predefined ‘emergency plan’. The composed service 
must satisfy the function and performance demand defined in the ‘emergency plan’. Because 
of the great significance for practice, service composition in cloud environment has attracted a 
lot of attention in both academia and industry. 

Cloud environment and service composition are auxiliary to each other. On one hand, cloud 
environment provides enormous hardware and software resources which are readily accessible. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5233 

On the other hand, service composition provides an effective way for users to manage and 
utilize cloud resources. Given the feature of cloud environment, there are two challenges for 
web service composition in cloud environment.  

First, with the number of cloud services growing, a number of services that provide the 
same function but differ in QoS are available. QoS of web services refers to various 
nonfunctional characteristics, such as response time and reliability. The composition approach 
needs to select the most appropriate service for each task so that the overall performance of the 
composite service is optimal. This is because high QoS can improve the reputation of service 
providers and then help to increase the providers’ profit. However, QoS of composite service 
involves multiple attributes. So evaluation of the overall performance is a multiple dimensions 
computation problem and need to be adjusted to particular context. 

Second, the QoS of composite service need to satisfy the constraints defined in service level 
agreement (SLA). SLA is a legal contract that states end-to-end QoS requirements between 
user and service provider [3]. The service provider must make compensation according to the 
agreement if the QoS of composite service violates SLA. Therefore, it is an important problem 
for service provider to avoid SLA violations. 

To deal with these issues, we propose an approach towards QoS and SLA aware web service 
composition in cloud environment. We first give the process of service composition and model 
the composition problem as an optimization problem. Then we design a service evaluation 
method which transforms multiple QoS attributes of a composite service into a value. In our 
evaluation method, we consider the QoS constraints defined in SLA as important factors. 
Based on the evaluation method, we propose a service selection algorithm aiming at obtaining 
the optimal QoS and increasing solutions’ feasibility. At last, we put forward a running 
strategy for the algorithm which can improve the solutions’ optimality and reduce the 
computing time to a large extend. The main contribution of this paper can be stated as follows: 

1. We map the problem of web service composition in cloud environment into a constrained 
composition optimization problem, and address it using a heuristic approach based on genetic 
and simulated annealing algorithm. 

2. We propose a service evaluation method for detecting which composition scheme should 
be avoided because it may lead to SLA violations. The simulation results show that this 
method helps to improve solutions’ feasibility. 

3. Since the number of services providing the same function in cloud may be too large, we 
take steps to improve time performance of the composition approach, including utilizing the 
notion of skyline and designing parallel running strategy. 

The rest of this paper is organized as follows: In section 2, related work is discussed and 
summarized. In section 3, we define our model for composition and describe the problem. Our 
approach consisting of service evaluation method, service selection algorithm and running 
strategy is presented in section 4. Section 5 shows the simulation results. Finally, section 6 
gives conclusions and an outlook on possible continuations of our work. 

2. Related Work 
QoS is a fundamental notion of cloud computing. Many researchers propose QoS obtaining 
and management technologies for web services, such as client feedback and routing of service 
operational events [4]. Zibin Zheng et al. [5] conduct several large-scale QoS evaluations on 
real-world web services. The work in [6] presents a formal model for predicting the 
availability of web services. In [7] , the authors present a QoS management model for cloud 
computing based on Fuzzy Cognitive Map (FCM). 



5234                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

In previous studies, different QoS-based web service composition strategies are proposed. 
Mahammad Alrifai et al. [8][9] define the problem as a multi-dimension multi-choice 
knapsack problem and address the problem by combining global optimization with local 
selection methods. By decomposing the optimization problem into small sub-problems, their 
methods are able to solve the problem in a distributed manner. The work in [10] extends the 
methods above. The authors present a strategy to further reduce the search space by examining 
only subsets of the candidate services since the number of candidate services for a composition 
may be too large. Some researchers use heuristic algorithms to solve the composition problem. 
Tao Yu et al. [11] model the problem as a multiconstraint optimal path problem. The authors 
propose a heuristic search method based on the algorithm of single-source shortest paths in 
directed acyclic graphs. Guobing Zhou et al. [12] propose a planning-based approach that can 
automatically convert a QoS aware composition task to a planning problem with temporal and 
numerical features. However, the SLA violation is not considered in above work. 

Some studies have been done to solve the SLA violation problem. Undesirable events 
during runtime of composite service may lead to the violation of temporal QoS constraints. In 
order to solve this problem, Hussein AI-Helal et al. [13] introduce replaceability as a metric 
for determining web service composition. The authors also propose a replanning algorithm to 
handle undesirable events during runtime. Some work establishes runtime adaptation of 
compositions as a promising tool to achieve SLA satisfactory. In order to minimize the total 
costs of violations and applied adaptations, Leitner et.al. [14] examine the associated cost 
tradeoff as an optimization problem in terms of expected QoS values versus the cost of their 
violations. However, the above strategies are just a kind of remedial measure. The work [15] 
searches the solution space exhaustively and tries to evaluate the feasibility of all possible 
combinations. Though the feasibility is the largest, the time complexity is too high. The 
approach cannot be applied in practice. Adrian Klein et al. [16] propose a network-aware 
model for service composition in cloud. They consider not only the QoS of web services but 
also the QoS of network. The authors estimate the network latency between arbitrary network 
locations of services or users and propose a genetic algorithm to select services that will result 
in low latency. Although their method is very helpful to minimize execution time violation, 
there are still some problems. First, the authors assume the network QoS is only relevant to the 
distance, which is not the truth. Second, their work only focuses on optimizing composite 
service’s execution time. In real applications, QoS constraints defined in a service level 
agreement usually involve multiple QoS attributes, such as price and availability. 

The motivation for our work is to propose an composition approach, guaranteeing 
solutions’ optimality and avoiding SLA violations simultaneously. 

3. Problem Description 
QoS of single service can be provided by providers, computed based on execution, or collected 
via users’ feedback in terms of the characteristic of each QoS attribute [17]. Our service 
evaluation method which will be explained in section 4 can be extended to different kinds of 
QoS attributes. So we just select four QoS attributes which are paid more attention in practice 
to illustrate the problem here : 

1. time (t):The execution duration between the moment when a request is arrived and the 
moment when the result is obtained. 

2. availability (a):The probability that a service is accessible. 
3. price (p):The money that the user has to pay to the service provider for the use of service. 
4. reputation (r):A measure of services’ trustworthiness. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5235 

We use QoS vector (<t,a,p,r>) to represent these attributes. These QoS attributes can be 
divided into two subsets: positive attributes and negative attributes. The increase of positive 
attributes is beneficial for users, such as availability and reputation, whereas the decrease of 
negative attributes is beneficial for users, such as time and price. 

Except the QoS of single services, the QoS of a composite service is also relevant to the 
structure of composition path. There are four common structures: sequential, parallel, 
conditional and loop. Fig. 2 shows the four service composition structures considered in our 
study. Similar to most works [17][18], aggregation functions for QoS computation of 
composite services are illustrated in Table 1. For example, Fig. 3 shows a composite service 
with the function of finding the best used car offers. The users submit their requests to the 
service. The service then returns a list of best offers along with a credit and an insurance offer 
for each car on the list. It is composed of four single services with the function of searching for 
used car information, searching for corresponding credit information, searching for 
corresponding insurance information and integrating the results respectively. We assume that 
their QoS vectors are <t1,a1,p1,r1>, <t2,a2,p2,r2>, <t3,a3,p3,r3> and <t4,a4,p4,r4> respectively. 
Two structures, sequential and parallel, exist in the composition path. Service 2 and service 3 
are parallel.  Service 1, the combination of service 2 and service 3, and service 4 are sequential. 
Then the QoS vector of the composite service is 

1 2 1,2,3,3 4 4Max( , ) , , ,i i ia pt t t p r rt =+ + ∏ ∑ i
i= i=

=
4 4

1 1

Avg= .  

Today, it is increasingly common for users and cloud providers to agree on explicit service 
level agreements. According to the above description of QoS, an SLA is currently defined with 
end-to-end response time, availability, price, and reputation of composite services. We use 
SLA vector <St,Sa,Sp,Sr>  to represent the QoS constraints defined in SLA. The positive QoS 
attributes of a composite service should not be smaller than the corresponding SLA constraints, 
and the negative QoS attributes of a composite service should not be larger than the 
corresponding SLA constraints. A composite service is said to be feasible only if all its QoS 
attributes satisfy the corresponding SLA constraints. 
 

……

1 2 n

                                

…
…

1

2

n

 
(a)                                                              (b) 

 
 

      

…
…

1

2

n

                                  

n

 
   (c)                                                                   (d) 
 
 

Fig. 2. Service composition structures. (a) sequential; (b) parallel; (c) conditional; (d) loop 
 



5236                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

Table 1. Aggregation functions for QoS  computation 

structure time ( t ) availability ( a ) price ( p ) reputation ( r ) 

sequential 
t t∑ i

i

n

=1

=  ia a∏
i=

n

1

=  p p∑ i
i=

n

1

=  1,2,..i n ir r== Avg  

parallel 
1,2,..Max i n it t==

 
ia a∏

i=

n

1

=  p p∑ i
i=

n

1

=  1,2,..i n ir r== Avg  

conditional 
1,2,..Avgi n it t==

 
1,2,..i n ia a== Avg

 
1,2,..i n ip p== Avg

 
1,2,..i n ir r== Avg  

loop = n it t  n( )= ia a  n= ip p  = ir r  

 

 

Search for used 
car  information

Search for corresponding 
credit information  

Search for corresponding 
insurance information 

Intergrate all 
the results Start End

service 1

service 2

service 3

service 4input output

 
 

Fig. 3. Example for QoS computation 
 
 
 

Based on the above concepts, we model the process of service composition in cloud 
environment as Fig. 4. Through logical decomposition, a user request is translated into a 
workflow WFlow = {T, L}. T = {task1, task2, ...taskn} is a set of n tasks, and L is a set of 
relationship between tasks (e.g. sequential, parallel and conditional). WFlow defines the 
component functions and their relationships. In the phase of service discovery, a service set S 
= {s1, s2, ...sn} for each task is discovered according to the functional description of atomic 
services. Atomic service (si) is an independent unit to solve a particular task. Each atomic 
service is related to a QoS vector <ti,ai,pi,ri>. A service set (S) is a collection of atomic 
services with the same function but different QoS attributes. Atomic services in the same 
service set can substitute for each other in function. Thus, there are many ways of 
combinations to compose the service. Though these combinations achieve the same function, 
their QoS are different from each other. Then in the phase of service selection, based on the 
QoS vector of atomic services and SLA vector, the service selection strategy selects an atomic 
service from each service set to form the final composition plan. 
 
 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5237 

 
 

Fig. 4. Process of service composition in cloud environment 
 
 

Finally, the QoS-based web service composition in cloud environment is modeled as an 
optimization problem, in which the overall QoS need to be optimized and each QoS attribute 
need to satisfy the corresponding constraint defined in SLA. 

4. Service composition Approach 

4.1 Service Evaluation Method 
In order to optimize the overall QoS of composite services, we need an evaluation model first. 
As there are more than one QoS attributes for each composite service, the evaluation model 
need to transform all the QoS attributes to a comprehensive value. 

Given the aim of satisfying SLA constraints, we design the evaluation model based on the 
following two principles. First, the evaluation model should reflect the solutions’ feasibility. 
For example, the evaluation value of composite service which is feasible should be larger than 
that of unfeasible composite service. Second, as the QoS attributes of an atomic service may 
change from original estimations during execution time because of some unexpected 
situations, such as server overload [15], the original feasible composition plan may become 
unfeasible after execution phase. In order to solve this problem, we prefer the feasible 
composite service whose QoS attributes keep longer distance from SLA constraints. So the 
longer the distance, the more preferable the composite service is. 

Based on the above principles, we propose an evaluation method consisting of two parts as 
follows: 

4.1.1 Determining attribute level 
Attribute level is determined for each QoS attribute of composite service before the evaluation 
value of composite service is computed. jς in (1) represents the relative distance from the j-th 
QoS attribute to corresponding SLA constraint, jQ is the j-th QoS attribute and jSq is the 
corresponding SLA constraint. If the QoS attribute satisfies the corresponding SLA constraint, 
then jς >0. If the QoS attribute equals to the corresponding SLA constraint, then jς =0. 



5238                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

Otherwise, jς <0. We divide QoS attributes into three attribute levels according to the relative 
distances: offgrade attribute, risky attribute and eligible attribute. Offgrade attributes are QoS 
attributes violating corresponding SLA constraints ( ς <0). Risky attributes are QoS attributes 
satisfying QoS constraints but very close to corresponding SLA constraints ( 0 0.1≤ ς ≤ ). 
Others are eligible attributes ( 0.1< ς ). 
 

  

j j
j

j
j

j j
j

j

Sq Q ,   Q negative attributes
Sq

Q Sq Q positive attributes
Sq

 −
∈

ς = 
− ∈

，

                                         (1) 

 

4.1.2 Determining attribute level 
For composite service whose QoS attributes are all eligible attributes, the evaluation value is 
computed as (2). jα  reflects the user’s preference for the j-th QoS attribute 

( j0 1α≤ ≤ ,∑
o

jα
j=1

= 1 ) and the number of QoS attributes is o. 

e j j

j 1

o

f α
=

= ×ς∑                                                                 (2) 

 
Obviously, composite service with one or more offgrade attributes is not the solution we 

want to obtain. A penalty operation to it is needed. A valid way to penalize it is to decrease its 
evaluation value. Risky attribute is a potential inducement to SLA violation which make it 
unfavorable. We also need to penalize composite service with one or more risky attributes by 
decreasing its evaluation value. Our penalty strategy is designed based on two considerations: 
First, the evaluation value of composite service with one or more offgrade attributes should be 
low enough for fear that this composite service is chosen to be the final output to user. Second, 
the evaluation value of composite service with one or more risky attributes should be 
decreased appropriately in order to reduce the probability that this composite service is chosen 
to be the final solution. 

Given the above penalty considerations, the penalty strategy is designed as follows: If a 
composite service has one or more offgrade attributes, its evaluation value is always -1. To 
feasible composite service which has one or more risky QoS attributes, the computation of its 
evaluation value need to multiply a penalty coefficient, which is shown in (3). 
 

r j j

j 1
,  0 <1

o

f α
=

 
= ×ς ×β ≤ β 
 
∑                                                     (3) 

 
The complete flowchart of service evaluation process is shown in Fig. 5. 

 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5239 

 
 

Fig. 5.  Flowchart of service evaluation process 
 

4.2 Service Selection Algorithm 
The number of atomic services may be extreme large in cloud environment. It will take a lot of 
time if we try to find the optimal solution by traversing all the combinations. This is 
unacceptable to users. To solve this problem, we design a heuristic search method based on a 
genetic algorithm (GA) and simulated annealing algorithm (SA). 

GA is population-based approach to search near-optimal solutions. It has been used to solve 
service composition problem in many work and has been proved to be effective. However, its 
convergence is not easily controlled. In order to overcome the disadvantages of GA, we 
combine GA with SA. SA performs better in avoiding locally optimal solution. We utilize the 
advantages of GA and SA to produce a service selection algorithm. The process of the 
algorithm is shown in Table 2. 

In Step2, composite services are encoded as genomes. Each gene in the genome represents 
the atomic service for each task. An example is shown in Fig. 6, the shown genome is 
corresponding to a composite service that consists of four tasks. Each gene represents the 
chosen atomic service from each service set. For example, atomic service s1i is chosen to 
implement task1. In this example, the workflow consists of four tasks, so the genome consists 
of four genes. 
 
 
 



5240                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

Table 2.  Process of service selection algorithm 
Service selection algorithm  
Step1: Definition and Initialization (capital letters represent constant and lowercase letters represent variable): 

T0: initial temperature. 
Tt: terminal temperature. 
C: cooling coefficient. 
Kmax: the maximal number of iterations under each temperature. 
M: the size of population. 
N: constant tag. 
t: the current temperature, t=T0. 
k: the number of iterations under current temperature, k=0. 
ρ : the current optimal solution. 
f(x): the fitness value of individual x. 

Step2: Encoding and generating the initial population with M individuals. 
Step3: Calculating the fitness values of the individuals in current population. Assigning the individual with the 

largest fitness value to ρ. 
Step4: Executing selection, crossover and mutation operators and then generating a new population. 
Step5: If k < Kmax, then k = k + 1, calculating the fitness values of the individuals in current population, go to 

step4. Else, go to step6. 
Step6: Selecting the individual (x) with the largest fitness value in the new population, if f(x)> f(ρ), then assign 

x to ρ. 
Step7: If ρ is not updated for continuous N iterations, the algorithm ends and outputs ρ. Else, then t = C ×t , go 

to step8. 
Step8: If t > Tt, then k = 0, go to step4. Else, the algorithm ends and fails to search the solution. 

 
 

 
Fig. 6. Example of genome 

 
 

In the second step, a predefined number (M) of genomes are generated to form the initial 
population. We adopt the generation method based on the notion of skyline, which we 
proposed earlier. Please refer to [19] for details. We give a brief introduction of it here. 
Generally, the initial population of genetic algorithm is generated randomly. In order to 
improve the solution’s quality and convergence speed, we generate one fifth of the initial 
population based on the notion of skyline and four fifths of the initial population in random. 
Fig. 7 shows an example of the notion of skyline. For simplicity, we only use two QoS 
attributes of atomic services in this example. They are availability and reputation which are 
both positive attributes. Atomic service d dominates atomic service b because that availability 
and reputation of d are both better than those of b. Atomic service f is not dominated by any 
other atomic services because there is no atomic service whose availability and reputation are 
both better than those of f. In other words, f is non-dominated. Skyline set is composed of 
atomic services that are non-dominated in a service set. The component atomic services of one 
fifth individuals in the initial population are chosen from skyline set. Though the computation 
cost for skyline set can be expensive if the number of atomic services per service set is too 
large, the computation cost of skyline sets has no influence on the process time of service 
composition. This is because the process of determining the skyline set does not need to be 
conducted during service composition time. The skyline set can be determined in advance and 
stored in caches, and can be updated when there are changes of atomic services. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5241 

 
Fig. 7. Example of skyline 

 
In Step3 and Step5, the algorithm evaluates the genome using fitness function. In order to 

obtain the optimal QoS, the fitness function must promote the increase of positive attributes 
and the decrease of negative attributes. In addition, the fitness function must penalize solutions 
that violating SLA constraints. Given the above considerations, we adopt the service 
evaluation method we proposed in section 4.1 as the fitness function. 

In Step4, the generation of new population uses the selection, crossover and mutation 
operations. The strategy of roulette-wheel selection is used to select individuals to be 
reproduced via mutation and crossover. The probability that an individual with fitness value 
f(sk)is chosen from the population is computed as (4). 
 

( )

1

( )

( )
k

Mk

j
j

f sp s
f s

=

=
∑

                                                                              

(4) 

 
Where f(sj) is the fitness value of the j-th individual. Roulette-wheel selection ensures that 

better individuals have higher chance to be chosen and better genes have higher probability to 
be inherited. The mutation operator selects a gene of the genome and randomly replaces it with 
an atomic service in the corresponding service set. In the design of crossover operator, some 
pairs of the matching genomes are chosen to be combined to generate offspring. For each 
parent genome, it is divided into two parts by a cut-off point. Then the tail parts are exchanged. 
The new genome generated by crossover operator is adopted as an individual in the next 
population with a specified probability. The adoption strategy of new individuals is described 
as follows: 

1. Assuming that two individuals xi , xj are chosen to execute crossover operation. After the 
crossover operation, two new individuals x’i and x’j are generated. Their fitness values are f(x’i) 
and f(x’j), respectively. According to the principle of SA, if min{1,exp(-(f(xj)-f(x’j))/t)}>R ,then 
x’j is adopted as an individual in the new population, else, xj is adopted as an individual in the 
new population. If min{1,exp(-(f(xi)-f(x’i))/t)}>R, then x’i is adopted as an individual in the 
new population, else, xi is adopted as an individual in the new population. R is a random 
number ranging from 0 to 1.  

2. Assuming that individual xi is chosen to execute mutation operation. After the mutation 
operation, a new individual x’i is generated. According to the principle of SA, if 
min{1,exp(-(f(xi)-f(x’i))/t)}>R, then x’i is adopted as an individual in the new population, else, 
xi is adopted as an individual in the new population. R is a random number ranging from 0 to 1. 

The above method of generating new population can overcome the premature disadvantage 
of GA. The traditional GA only adopts new individuals which are better than the current 



5242                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

individuals. So GA is easily to be premature. In our method, new individuals with smaller 
fitness value also have chance to be adopted. This is helpful to avoid outputting locally optimal 
solution. 

In Step6, the optimal individual under current temperature is selected. In Step 7, if the 
optimal solution is not changed for continuous N times, then algorithm ends and output the 
solution. Else, the temperature is reduced. 

Step 8 means that step4 to step7 are repeated until the temperature reduces to the terminal 
temperature. 

4.3 Running Strategy 
In order to obtain a near-optimal solution through genetic algorithm, it is better to expand the 
size of initial population. However, the algorithm not only need to execute selection, crossover 
and mutation operations to the large population, but also needs to compute the fitness value for 
every individual, which results in the reduction of the approach’s efficiency. Given the above 
consideration, we choose a parallel running strategy. 

An important feature of genetic algorithm is that it is easy to be operated in parallel manner. 
So we transform the algorithm shown in Table 2 into a parallel approach. The principle is that 
we divide the initial population into multiple sub populations. These sub populations evolve 
independently according to the algorithm shown in Table 2. However, the evolutionary 
parameters for different sub populations (such as mutation probability, cooling coefficient) are 
different. Every time the sub populations reach to final states under certain temperature (Step 6 
in Table 2), the global optimal solution will be chosen to replace the worst solution of each 
sub population. The detail design of the parallel approach is shown in Fig. 8. 
 

 
Fig. 8. Overview of the parallel approach 

 
In Fig. 8, Kmax is the maximal number of iterations under each temperature, which has been 

defined in Table 2. The values of Kmax, T0, N and M which are defined in Table 2 for different 
sub population are equal respectively. The Tt is designed according to T0 and C to guarantee 
that the largest number of temperature reduction for every sub population is the same. The 
convergence criterion in Fig. 8 is that the global optimal individual does not change for 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5243 

continuous N iterations. In the parallel approach, the global optimal individual spreads among 
sub populations every time the sub populations evolve Kmax times. Considering that the 
evolution speeds for sub populations are different, we adopt a synchronous processing 
mechanism, i.e. the sub populations who accomplish Kmax evolutions ahead switch to waiting 
status. The global optimal individual will not be selected until all the sub populations 
accomplish evolution. If there is a sub population converges ahead, its output will still 
participate the selection of global optimal individual in the following iterations of the parallel 
approach. 

5. Simulation 
In this section, we present simulations of our approach. We first describe the setup of our 
simulation, and then evaluate the search performance and feasibility of our approach: (a) 
search performance, in terms of the solutions’ fitness values and the corresponding runtime 
required to find the solutions, (b) feasibility, in terms of whether a solution satisfies the SLA 
constraints or not. 

5.1 Simulation Setup 
All simulation results were measured with a Sun Java SE 7 VM running on Windows 7 PC 
with an AMD 4.1 GHz CPU (4 cores) and 8GB memory space.  

For simulation, the four QoS attributes mentioned above were considered and they gained 
equal preference from users. QoS of atomic services were generated randomly. The random 
values of response time in each service set had a Gaussian distribution and a mean value within 
the range [20, 1500] millisecond. The ranges of availability, price and reputation were [0.95, 
1], [2, 15] dollar and [0.4, 1] in order. We then created SLA vectors of four values in terms of 
the number of service sets. Each SLA vector, which is noted by <St,Sa,Sp,Sr>, is 
corresponding to one SLA-based composition request. In reality, QoS constraints defined in 
SLA are generated through the negotiation between users and service providers. In our 
simulation, in order to evaluate our approach reasonably and efficiently, we generated the QoS 
vectors according to the number of service sets and the value ranges of QoS attributes. They 
were computed as follows. m is the number of service sets required by the composition 
request. 

St = 760m + 260(m + 1)                                                 (5) 

Sa = 0.98m                                                           (6) 

Sp = 8m                                                              (7) 

Sr = 0.72                                                             (8) 

For the purpose of our simulation, the following approaches were used. 
1. GA_S: It is an approach based on our earlier proposed generic algorithm [19], which is 

adapted to the new problem described in this work. Its population size is 150. 
2. GA_SA: It is the new approach described in Table 2 of this paper. However, it does not 

adopt the new proposed running strategy described in section 4.3. The maximal number of 
iterations under each temperature is 200. The mutation probability is 0.05. 

3. GA_SA_P(Kmax =200): It is the new approach described in section 4. It is notable that it 
adopts the parallel running strategy proposed in section 4.3. The maximal number of iterations 



5244                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

under each temperature is 200. The initial population was divided into three sub populations. 
The evolutionary parameters for sub populations are given in Table 3. 

4. GA _SA_P(Kmax =400): It is the new approach described in section 4. It is notable that it 
adopts the parallel running strategy proposed in section 4.3. The maximal number of iterations 
under each temperature is 400. The initial population was divided into three sub populations. 
The evolutionary parameters for sub populations are given in Table 3. 

5. MCSP: It is an algorithm proposed in [11] to solve the problem of QoS and constraints 
aware service composition. It is based on the algorithm of single-source shortest paths in 
directed acyclic graphs. MCSP is able to find a composition path that produces the highest 
utility subject to the multiple QoS constraints because it topologically visits all nodes in the 
service candidate graph. However, it is very time consuming. 
 

Table 3. Setting of evolutionary parameters for sub populations 
Parameter Sub population 1 Sub population 2 Sub population 3 

T0 0.5 0.5 0.5 

C 0.98 0.95 0.93 

Tt 2.41×10- 2 2.28×10- 4 9.36×10- 6 

M 50 50 50 

Mutation probability 0.05 0.1 0.02 

 
The convergent criterion for all the algorithms was that the best fitness value does not 

improve over the last 10 iterations (N=10). 

5.2 Search Performance 
To evaluate the search performance of our approach, we compare the solutions’ fitness 

values and runtime of GA_SA_P(Kmax =400), GA_SA_P(Kmax =200), GA_SA, GA_S and 
MCSP versus an increasing problem size. Fig. 9 plot the fitness value and runtime against an 
increasing number of service sets with a fixed number (320) of atomic services per service set. 
Fig. 10 plot the fitness value and runtime against an increasing number of atomic services per 
service set with a fixed number (20) of service sets.  
 

      
(a)                                                                                 (b) 
Fig. 9. Fitness value and Runtime VS number of service sets 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5245 

  
(a)                                                                                 (b) 

Fig. 10. Fitness value and Runtime VS number of atomic services per set 
 

From Fig. 9(a) and Fig. 10(a), we can see that in most scenarios the fitness values generated 
by GA_SA were much higher than those generated by GA_S. The contrast was more obvious 
when the problem scale become larger. This is because GA_SA can avoid locally optimal 
solution effectively, whereas GA_S is easily to be premature. In some scenarios where GA_S 
avoided the premature feature, the fitness values generated by GA_SA and GA_S were at the 
same level. We can also see that the fitness values generated by GA_S were higher than those 
generated by GA_SA in only a few scenarios. We validated the feasibility of the 
corresponding solutions and found that only one solution was feasible, which indicated that 
GA_S attempted to obtain the large fitness value at the cost of feasibility. Fig. 9(a) and Fig. 
10(a) also show that the fitness values generated by GA_SA_P(Kmax=200) were a little higher 
than those generated by GA_SA. This is because that the global optimal solution spreads 
among sub populations periodically in the parallel strategy, which helps sub populations to get 
rid of local convergence. Furthermore, the fitness values generated by GA_SA_P(Kmax=400) 
are very close to those generated by MCSP.  MCSP generates the optimal solutions because it 
topologically visits all nodes in the service candidate graph. Thus, the simulation results 
indicate that GA_SA_P can generate near-optimal solutions when Kmax is large.  

Fig. 9(b) and Fig. 10(b) illustrate the runtime of four approaches versus an increasing 
dataset size. The runtime of MCSP is extremely large and over ten times as much as other 
approaches. Thus, the runtime of MCSP is not shown in the figure. From the figure we can see 
that the runtime of GA_SA was a little larger than that of GA_S and the gap was not obvious. 
However, the feasibility and fitness values of solutions generated by GA_SA were better than 
those of GA_S. Therefore, it seems that GA_S is just a little faster, because it fails to improve 
the feasibility and optimality of its solution. The runtime of GA_SA_P(Kmax=200) was much 
lower than that of GA_SA. Obviously the parallel running strategy results in high efficiency. 

It’s worth noting that the fitness values generated by GA_SA_P(Kmax=400) was a little 
higher that those generated by GA_SA_P(Kmax=200) while the running time of 
GA_SA_P(Kmax=400) was higher than those of GA_SA_P(Kmax=200) in the figures. This 
illustrate that the maximal number of iterations under each temperature can influence the 
performance of the parallel strategy obviously. The larger the Kmax is, the higher the 
probability of obtaining the optimal solution is. However, with the increasing of Kmax, the 
runtime of the approach increases. So in real case a compromise is needed. 

5.3 Feasibility Evaluation 
In this simulation, we measured the feasibility of our approach. For this purpose, we created 

80 scenarios. In the first 40 scenarios, the number of atomic services per service set was 



5246                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

assigned a fix number 320 and the number of service sets ranged from 2 to 41. In the last 40 
scenarios, the number of atomic services per service set increased from 40 to 820 at a rate of 20 
per instance and the number of service sets was assigned a fix number 15. Table 4 shows the 
statistical results of the three approaches’ feasible rate obtained from 80 instances. 
 

Table 4. Statistical results of feasible evaluation 
 GA_SA_P(Kmax=400) GA_SA GA_S MCSP 
The number of feasible solutions 80 79 74 80 
Feasible rate 100% 98.75% 92.50% 100% 

 
In the simulation, there was only one scenario where GA_SA failed to search the solution. 

In the remaining scenarios the solutions generated by GA_SA all satisfied the QoS constraints 
defined in SLA. From Table 4, we observed that the feasible rate of GA_SA was higher than 
that of GA_S. Through the parallel running strategy, the feasibility can reach to 100%. GA_S 
output solutions in all the scenarios. However, 7.5% of these solutions were unfeasible. The 
contrast shows that our proposed service evaluation method reflects the feasibility of services 
effectively and our approach can be applied to real situations in terms of its high feasibility. 

6. Conclusion 
In this paper we described a feasibility-enhanced approach to QoS-based web service 
composition in cloud environment, consisting of a service evaluation method, a service 
selection algorithm and a parallel running strategy. To deal with the SLA violation problem, 
our service evaluation method considers SLA constraint as an important factor. Based on the 
service evaluation method, genetic and simulated annealing algorithm, a service selection 
algorithm and corresponding running strategy are designed, which achieve a better feasibility 
without sacrificing solutions’ optimality. In our future work, we plan to conduct real-world 
experiments and optimize our approach. Additionally, we would like to develop a runtime 
recovery strategy to handle the undesiring events, which is also important to enhance the 
services’ feasibility. 

References 
[1] M. Bichler and K.J. Lin, “Service-oriented computing,” IEEE Computer, vol. 39, no. 3, pp. 99–101, 

2006.  Article (CrossRef Link) 
[2] D.  Guinard, V. Trifa, S. Karnouskos, P.  Spiess, and D.  Savio, “Interacting with the SOA-based 

internet of things: discovery, query, selection, and on-demand provisioning of Web services,” 
Services Computing IEEE Transactions on, vol. 3, no. 3, pp. 223-235, 2010. 
Article (CrossRef Link) 

[3] S. Stein, T.R. Payne, and N.R. Jennings, “Robust execution of service workflows using 
redundancy and advance reservations,” Services Computing IEEE Transactions on, vol. 4, no. 2, 
pp. 125-139, 2011. Article (CrossRef Link) 

[4] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for Web services,” in Proc. of International 
Conference on Service-Oriented Computing, Springer-Verlag, pp. 132-144, 2007. 
Article (CrossRef Link) 

[5] Z. Zheng, Y. Zhang, and M.R. Lyu, “Investigating QoS of real-world Web services,” Services 
Computing IEEE Transactions on, vol. 7, no. 1, pp.32-39, 2014.  Article (CrossRef Link) 

 

http://dx.doi.org/doi:10.1109/MC.2006.102
http://dx.doi.org/doi:10.1109/TSC.2010.3
http://dx.doi.org/doi:10.1109/TSC.2010.47
http://dx.doi.org/doi:10.1007/978-3-540-74974-5_11
http://dx.doi.org/doi:10.1109/TSC.2012.34


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 12, December 2016                            5247 

[6] M. Silic, G. Delac, I. Krka, and S. Srbljic, “Scalable and accurate prediction of availability of 
atomic Web services,” Services Computing IEEE Transactions on, vol. 7, no. 2, pp. 252-264, 2014.  
Article (CrossRef Link) 

[7] P. Zhang, Z. Yan, “A QoS-aware system for mobile cloud computing,” in Proc. of IEEE 
International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 518-522, 
2011. Article (CrossRef Link) 

[8] M. Alrifai, T. Risse, P. Dolog, and W. Nejdl, “A scalable approach for qos-based Web service 
selection,” in Proc. of Service-Oriented Computing–ICSOC 2008 Workshops, Springer Berlin 
Heidelberg, pp. 190-199, 2009.  Article (CrossRef Link) 

[9] M. Alrifai and T. Risse, “Combining global optimization with local selection for efficient 
qos-aware service composition,” in Proc. of the 18th International Conference on World Wide 
Web, pp. 881-890, 2009.  Article (CrossRef Link) 

[10] M. Alrifai, D. Skoutas, and T. Risse, “Selecting skyline services for qos-based Web service 
composition,” in Proc. of the 19th International Conference on World Wide Web, ACM Press, pp. 
11–20, 2010.  Article (CrossRef Link) 

[11] T. Yu, Y. Zhang, K. J. Lin, “Efficient algorithms for Web services selection with end-to-end qos 
constraints,” ACM Transactions on Web, vol. 1,  no. 1,  pp.1 -25, 2007.  Article (CrossRef Link) 

[12] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, “QoS-aware dynamic composition of 
Web services using numerical temporal planning,” Services Computing IEEE Transactions on, vol. 
7, no, 1, pp. 18-31, 2014.  Article (CrossRef Link) 

[13] H. Al-Helal and R. Gamble, “Introducing replaceability into web service composition,” Services 
Computing, IEEE Transactions on, vol. 7, no. 2, pp. 198–209, 2014.  Article (CrossRef Link) 

[14] P. Leitner, W. Hummer, and S. Dustdar, “Cost-based optimization of service compositions,” 
Services Computing, IEEE Transactions on, vol. 6, no. 2, pp. 239–251, 2013. 
Article (CrossRef Link) 

[15] B.Y. Wu, C.H. Chi, and S. Xu, “Service selection model based on qos reference vector,” Services, 
2007 IEEE Congress on, pp. 270–277, 2007. Article (CrossRef Link)  

[16] A. Klein, F. Ishikawa, and S. Honiden, “Towards network-aware service composition in the 
cloud,” in Proc. of 21th International Conference on World Wide Web, France, pp. 959-968, 2012.  
Article (CrossRef Link) 

[17] Y. Liu, A.H. Ngu, and L.Z. Zeng, “Qos computation and policing in dynamic web service 
selection,” in Proc. of 13th International World Wide Web Conference on Alternate Track Papers 
& Posters, pp.66–73, 2004.  Article (CrossRef Link) 

[18] J. Xiao and R. Boutaba, “Qos-aware service composition and adaptation in autonomic 
communication,” Selected Areas in Communications, IEEE Journal on, vol. 23, no. 12, 
pp.2344–2360, 2005.  Article (CrossRef Link) 

[19] D. Wang, Y. Yang, and Z. Mi, “A genetic-based approach to web service composition in 
geo-distributed cloud environment,” Computers & Electrical Engineering, vol. 43, pp. 129–141, 
2015. Article (CrossRef Link) 

 
 
 
 
 
 
 
 

http://dx.doi.org/10.1109/TSC.2013.3
http://dx.doi.org/doi:10.1109/CCIS.2011.6045122
http://dx.doi.org/doi:10.1007/978-3-642-01247-1_20
http://dx.doi.org/doi:10.1145/1526709.1526828
http://dx.doi.org/doi:10.1145/1772690.1772693
http://dx.doi.org/doi:10.1145/1232722.1232728
http://dx.doi.org/doi:10.1109/TSC.2012.27
http://dx.doi.org/doi:10.1109/TSC.2013.23
http://dx.doi.org/doi:10.1109/TSC.2011.53
http://dx.doi.org/doi:10.1109/SERVICES.2007.56
http://dx.doi.org/doi:10.1145/2187836.2187965
http://dx.doi.org/doi:10.1145/1013367.1013379
http://dx.doi.org/%20doi:10.1109/JSAC.2005.857212
http://dx.doi.org/doi:10.1016/j.compeleceng.2014.10.008


5248                                                               Wang et al.: QoS and SLA Aware Web Service Composition in Cloud Environment 

 
 

Dandan Wang  received the B.S degree in 2012 and is working toward the Ph.D degree 
at the School of Computer and Communication Engineering at University of Science and 
Technology Beijing, China. Her main research interests include service-oriented 
architectures, service composition, and scheduling of distributed resources in the cloud. 

 
 

Hao Ding received the B.S degree in 2010 from University of Science and Technology 
Beijing, China. Now he is working toward the Ph.D degree both in the School of 
Computer and Communication Engineering at University of Science and Technology 
Beijing, China. His main research interests include network measurement, service 
optimization, and cloud computing. 

 
 

Yang  Yang received B.S. in aotomation from the Department of Automation, Beijing 
Institute of Iron and Stell, in 1982. Received his Ph.D. in information Engineering, from 
University of Science and Technology in Lillie, France, in 1988. He has been a professor 
of University of Science and Technology Beijing since 1988. From 1994, he has been the 
senior member of many national and provincial technique committees. Prof. Yang Yang’s 
research interests include service science and cloud computing, intelligent control, image 
processing and pattern recognition, multimedia communication, grid technology. He has 
co-authored more than 200 refereed journal and conference papers, and several books. 

 
 

Zhenqiang Mi received B.S. in aotomation and Ph.D. in communication engineering, 
both from School of Information Engineering, University of Science and Technology 
Beijing, in year 2006 and 2011, respectively. From 2011, he is assistant professor with the 
school of computer and communication engineering, University of Science and 
Technology Beijing. Prof. Mi is IEEE member, and serves as a frequent reviewer in 
several international journals and TPC member in several international conferences. His 
research interest includes service computing, multi-robot systems, connectivity in mobile 
ad hoc networks and cloud computing in mobile environments. 

 
 

Li Liu received the Ph.D degree in computer and science from University of Science and 
Technology Beijing, China, in 2005. She is now an associate professor in University of 
Science and Technology Beijing. She is a Master graduate tutor. And her research 
interests are in the areas of distributed systems, network security. She is a member of the 
IEEE and the ACM. 

 

Zenggang Xiong received his Ph.D. degree in Computer Technology from University 
of Science and Technology Beijing, China, in 2009. He has been a professor of Hubei 
Engineering University. His research interest includes computer network, cloud 
computing, big data and Internet of things. 

 


