DOI QR코드

DOI QR Code

Identification and Characterization of Putative Integron-Like Elements of the Heavy-Metal-Hypertolerant Strains of Pseudomonas spp.

  • Ciok, Anna (Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw) ;
  • Adamczuk, Marcin (Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw) ;
  • Bartosik, Dariusz (Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw) ;
  • Dziewit, Lukasz (Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw)
  • Received : 2016.05.23
  • Accepted : 2016.07.20
  • Published : 2016.11.28

Abstract

Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas.

Keywords

References

  1. Alting-Mees MA, Short JM. 1989. pBluescript II: gene mapping vectors. Nucleic Acids Res. 17: 9494. https://doi.org/10.1093/nar/17.22.9494
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Bartosik AA, Glabski K, Jecz P, Mikulska S, Fogtman A, Koblowska M, Jagura-Burdzy G. 2014. Transcriptional profiling of ParA and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa. PLoS One 9: e87276. https://doi.org/10.1371/journal.pone.0087276
  4. Bartosik D, Szymanik M, Wysocka E. 2001. Identification of the partitioning site within the repABC-type replicon of the composite Paracoccus versutus plasmid pTAV1. J. Bacteriol. 183: 6234-6243. https://doi.org/10.1128/JB.183.21.6234-6243.2001
  5. Boucher Y, Labbate M, Koenig JE, Stokes HW. 2007. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol. 15: 301-309. https://doi.org/10.1016/j.tim.2007.05.004
  6. Bullock WO, Fernandez JM, Short JM. 1987. XL1-Blue - a high-efficiency plasmid transforming recA Escherichia coli strain with ${\beta}$-galactosidase selection. BioTechniques 5: 376-378.
  7. Cambray G, Guerout AM, Mazel D. 2010. Integrons. Annu. Rev. Genet. 44: 141-166. https://doi.org/10.1146/annurev-genet-102209-163504
  8. Carver T , Berriman M, Tivey A , Patel C, Bohme U, Barrell BG, et al. 2008. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24: 2672-2676. https://doi.org/10.1093/bioinformatics/btn529
  9. Cho HH, Kwon GC, Kim S, Koo SH. 2015. Distribution of Pseudomonas-derived cephalosporinase and metallo-${\beta}$-lactamases in carbapenem-resistant Pseudomonas aeruginosa isolates from Korea. J. Microbiol. Biotechnol. 25: 1154-1162. https://doi.org/10.4014/jmb.1503.03065
  10. Coleman NV, Holmes AJ. 2005. The native Pseudomonas stutzeri strain Q chromosomal integron can capture and express cassette-associated genes. Microbiology 151: 1853-1864. https://doi.org/10.1099/mic.0.27854-0
  11. Dziewit L, Adamczuk M, Szuplewska M, Bartosik D. 2011. DIY series of genetic cassettes useful in construction of versatile vectors specific for Alphaproteobacteria. J. Microbiol. Methods 86: 166-174. https://doi.org/10.1016/j.mimet.2011.04.016
  12. Dziewit L, Pyzik A, Matlakowska R, Baj J, Szuplewska M, Bartosik D. 2013. Characterization of Halomonas sp. ZM3 isolated from the Zelazny most post-flotation waste reservoir, with a special focus on its mobile DNA. BMC Microbiol. 13: 59. https://doi.org/10.1186/1471-2180-13-59
  13. Dziewit L, Pyzik A, Szuplewska M, Matlakowska R, Mielnicki S, Wibberg D, et al. 2015. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. Front. Microbiol. 6: 152.
  14. Erill I, Escribano M, Campoy S, Barbe J. 2003. In silico analysis reveals substantial variability in the gene contents of the gamma proteobacteria LexA-regulon. Bioinformatics 19: 2225-2236. https://doi.org/10.1093/bioinformatics/btg303
  15. Fonseca EL, Vieira VV, Cipriano R, Vicente AC. 2005. Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in Amazon region, Brazil. FEMS Immunol. Med. Microbiol. 44: 303-309. https://doi.org/10.1016/j.femsim.2005.01.004
  16. Frickey T, Lupas A. 2004. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20: 3702-3704. https://doi.org/10.1093/bioinformatics/bth444
  17. Gillings M, Boucher Y, Labbate M, Holmes A, Krishnan S, Holley M, Stokes HW. 2008. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190: 5095-5100. https://doi.org/10.1128/JB.00152-08
  18. Gillings MR, Xuejun D, Hardwick SA, Holley MP, Stokes HW. 2009. Gene cassettes encoding resistance to quaternary ammonium compounds: a role in the origin of clinical class 1 integrons? ISME J. 3: 209-215. https://doi.org/10.1038/ismej.2008.98
  19. Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I, Da Re S, et al. 2009. The SOS response controls integron recombination. Science 324: 1034. https://doi.org/10.1126/science.1172914
  20. Holmes AJ, Holley MP, Mahon A , Nield B , G illings M, Stokes HW. 2003. Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J. Bacteriol. 185: 918-928. https://doi.org/10.1128/JB.185.3.918-928.2003
  21. Irani VR, Rowe JJ. 1997. Enhancement of transformation in Pseudomonas aeruginosa PAO1 by $Mg^{2+}$ and heat. BioTechniques 22: 54-56.
  22. Johansson C, Kamali-Moghaddam M, Sundstrom L. 2004. Integron integrase binds to bulged hairpin DNA. Nucleic Acids Res. 32: 4033-4043. https://doi.org/10.1093/nar/gkh730
  23. Jove T, Da Re S, Denis F, Mazel D, Ploy MC. 2010. Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet. 6: e1000793. https://doi.org/10.1371/journal.pgen.1000793
  24. Koenig JE, Sharp C, Dlutek M, Curtis B, Joss M, Boucher Y, Doolittle WF. 2009. Integron gene cassettes and degradation of compounds associated with industrial waste: the case of the Sydney tar ponds. PLoS One 4: e5276. https://doi.org/10.1371/journal.pone.0005276
  25. Kushner SR. 1978. An improved method for transformation of E. coli with ColE1 derived plasmids, pp. 17-23. In Boyer HB, Nicosia S (eds.). Genetic Engineering. Elsevier/North- Holland, Amsterdam.
  26. Marx CJ, Lidstrom ME. 2001. Development of improved versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiology 147: 2065-2075. https://doi.org/10.1099/00221287-147-8-2065
  27. Matlakowska R, Sklodowska A. 2009. The culturable bacteria isolated from organic-rich black shale potentially useful in biometallurgical procedures. J. Appl. Microbiol. 107: 858-866. https://doi.org/10.1111/j.1365-2672.2009.04261.x
  28. Matlakowska R, Sklodowska A. 2011. Biodegradation of Kupferschiefer black shale organic matter (Fore-Sudetic Monocline, Poland) by indigenous microorganisms. Chemosphere 83: 1255-1261. https://doi.org/10.1016/j.chemosphere.2011.03.003
  29. Mazel D. 2006. Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4: 608-620. https://doi.org/10.1038/nrmicro1462
  30. Nield BS, Holmes AJ, Gillings MR, Recchia GD, Mabbutt BC, Nevalainen KM, Stokes HW. 2001. Recovery of new integron classes from environmental DNA. FEMS Microbiol. Lett. 195: 59-65. https://doi.org/10.1111/j.1574-6968.2001.tb10498.x
  31. Nunes-Duby SE, Kwon HJ, Tirumalai RS, Ellenberger T, Landy A. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26: 391-406. https://doi.org/10.1093/nar/26.2.391
  32. Partridge SR, Tsafnat G , Coiera E , Iredell JR. 2009. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33: 757-784. https://doi.org/10.1111/j.1574-6976.2009.00175.x
  33. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51: 246-255. https://doi.org/10.1016/j.plasmid.2004.02.003
  34. Rajeev L, Malanowska K, Gardner JF. 2009. Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol. Mol. Biol. Rev. 73: 300-309. https://doi.org/10.1128/MMBR.00038-08
  35. Reese MG. 2001. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput. Chem. 26: 51-56. https://doi.org/10.1016/S0097-8485(01)00099-7
  36. Rhodes G, Bosma H, Studholme D, Arnold DL, Jackson RW, Pickup RW. 2014. The rulB gene of plasmid pWW0 is a hotspot for the site-specific insertion of integron-like elements found in the chromosomes of environmental Pseudomonas fluorescens group bacteria. Environ. Microbiol. 16: 2374-2388. https://doi.org/10.1111/1462-2920.12345
  37. Rowe-Magnus DA, Mazel D. 2002. The role of integrons in antibiotic resistance gene capture. Int. J. Med. Microbiol. 292: 115-125. https://doi.org/10.1078/1438-4221-00197
  38. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
  39. Sklodowska A, Matlakowska R, Bal K. 2005. Extracellular polymer produced in the presence of copper minerals during bioleaching. Geomicrobiol. J. 22: 1-9. https://doi.org/10.1080/01490450590922505
  40. Stokes HW, Holmes AJ, Nield BS, Holley MP, Nevalainen KM, Mabbutt BC, Gillings MR. 2001. Gene cassette PCR: sequence-independent recovery of entire genes from environmental DNA. Appl. Environ. Microbiol. 67: 5240-5246. https://doi.org/10.1128/AEM.67.11.5240-5246.2001
  41. Su J, Shi L, Yang L, Xiao Z, Li X, Yamasaki S. 2006. Analysis of integrons in clinical isolates of Escherichia coli in China during the last six years. FEMS Microbiol. Lett. 254: 75-80. https://doi.org/10.1111/j.1574-6968.2005.00025.x
  42. Szuplewska M, Ludwiczak M, Lyzwa K, Czarnecki J, Bartosik D. 2014. Mobility and generation of mosaic nonautonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs). PLoS One 9: e105010. https://doi.org/10.1371/journal.pone.0105010
  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  44. Thibodeau SA, Fang R, Joung JK. 2004. High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. BioTechniques 36: 410-415.
  45. Vaisvila R, Morgan RD, Posfai J, Raleigh EA. 2001. Discovery and distribution of super-integrons among pseudomonads. Mol. Microbiol. 42: 587-601.
  46. Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. 2005. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433: 212-226. https://doi.org/10.1016/j.abb.2004.09.003
  47. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608-1615. https://doi.org/10.1093/bioinformatics/btq249

Cited by

  1. Ultraviolet irradiation sensitizes Pseudomonas aeruginosa PAO1 to multiple antibiotics vol.4, pp.12, 2016, https://doi.org/10.1039/c8ew00293b