DOI QR코드

DOI QR Code

Insights into the Usage of Nucleobase Triplets and Codon Context Pattern in Five Influenza A Virus Subtypes

  • 투고 : 2016.05.09
  • 심사 : 2016.07.20
  • 발행 : 2016.11.28

초록

Influenza A virus is a single-stranded RNA virus with a genome of negative polarity. Owing to the antigenic diversity and cross concrete shift, an immense number of novel strains have developed astronomically over the years. The present work deals with the codon utilization partialness among five different influenza A viruses isolated from human hosts. All the subtypes showed the homogeneous pattern of nucleotide utilization with a little variation in their utilization frequencies. A lower bias in codon utilization was observed in all the subtypes as reflected by higher magnitudes of an efficacious number of codons. Dinucleotide analysis showed very low CpG utilization and a high predilection of A/T-ending codons. The H5N1 subtype showed noticeable deviation from the rest. Codon pair context analysis showed remarkable depletion of NNC-GNN and NNT-ANN contexts. The findings alluded towards GC-compositional partialness playing a vital role, which is reflected in the consequential positive correlation between the GC contents at different codon positions. Untangling the codon utilization profile would significantly contribute to identifying novel drug targets that will pacify the search for antivirals against this virus.

키워드

참고문헌

  1. Ahn I, Son HS. 2010. Comparative study of the nucleotide bias between the novel H1N1 and H5N1 subtypes of influenza A viruses using bioinformatics techniques. J. Microbiol. Biotechnol. 20: 63-70.
  2. Akashi H. 1994. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136: 927-935.
  3. Boycheva S, Chkodrov G, Ivanov I. 2003. Codon pairs in the genome of Escherichia coli. Bioinformatics 19: 987-998. https://doi.org/10.1093/bioinformatics/btg082
  4. Chen Y. 2013. A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. Biomed. Res. Int. 2013: 406342.
  5. Cheng X, Virk N, Chen W, Ji S, Sun Y, Wu X. 2013. CpG usage in RNA viruses: data and hypotheses. PLoS One 8: e74109. https://doi.org/10.1371/journal.pone.0074109
  6. Chiapello H, Ollivier E, Landes-Devauchelle C, Nitschke P, Risler JL. 1999. Codon usage as a tool to predict the cellular location of eukaryotic ribosomal proteins and aminoacyltRNA synthetases. Nucleic Acids Res. 27: 2848-2851. https://doi.org/10.1093/nar/27.14.2848
  7. Comeron JM, Aguade M. 1998. An evaluation of measures of synonymous codon usage bias. J. Mol. Evol. 47: 268-274. https://doi.org/10.1007/PL00006384
  8. Gill PW. 1971. Hong Kong 68 variant of influenza A2. Br. Med. J. 3: 308.
  9. Goni N, Iriarte A, Comas V, Sonora M, Moreno P, Moratorio G, et al. 2012. Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development. Virol. J. 9: 263. https://doi.org/10.1186/1743-422X-9-263
  10. Gouy M, Gautier C. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10: 7055-7074. https://doi.org/10.1093/nar/10.22.7055
  11. Gramer MR, Lee JH, Choi YK, Goyal SM, Joo HS. 2007. Serologic and genetic characterization of North American H3N2 swine influenza A viruses. Can. J. Vet. Res. 71: 201-206.
  12. Grantham R, Gautier C, Gouy M, Mercier R, Pave A. 1980. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8: r49-r62.
  13. Greenacre M, Hastie T. 1987. The geometric interpretation of correspondence analysis. J. Am. Stat. Assoc. 82: 437-447. https://doi.org/10.1080/01621459.1987.10478446
  14. Greenacre M, Vrba E. 1984. Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology 65: 984-997. https://doi.org/10.2307/1938070
  15. Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. 2008. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 4: e1000079. https://doi.org/10.1371/journal.ppat.1000079
  16. Hammer O, Harper D, Ryan P. 2001. PAST - PAlaeontological STatistics, ver. 1.89. Palaeontol. Electron. 4: 1-9.
  17. Jenkins GM, Holmes EC. 2003. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res. 92: 1-7. https://doi.org/10.1016/S0168-1702(02)00309-X
  18. Karlin S, Doerfler W, Cardon LR. 1994. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68: 2889-2897.
  19. Karlin S, Mrazek J. 1997. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci. USA 94: 10227-10232. https://doi.org/10.1073/pnas.94.19.10227
  20. Korteweg C, Gu J. 2008. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am. J. Pathol. 172: 1155-1170. https://doi.org/10.2353/ajpath.2008.070791
  21. Moriyama EN, Powell JR. 1998. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res. 26: 3188-3193. https://doi.org/10.1093/nar/26.13.3188
  22. Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, et al. 2007. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS One 2: e847. https://doi.org/10.1371/journal.pone.0000847
  23. Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, et al. 2005. Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol. 6: R28. https://doi.org/10.1186/gb-2005-6-3-r28
  24. Novembre JA. 2002. Accounting for background nucleotide composition when measuring codon usage bias. Mol. Biol. Evol. 19: 1390-1394. https://doi.org/10.1093/oxfordjournals.molbev.a004201
  25. Ogle JM, Ramakrishnan V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74: 129-177. https://doi.org/10.1146/annurev.biochem.74.061903.155440
  26. Osawa S, Ohama T, Yamao F, Muto A, Jukes TH, Ozeki H, Umesono K. 1988. Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous twocodon sets. Proc. Natl. Acad. Sci. USA 85: 1124-1128. https://doi.org/10.1073/pnas.85.4.1124
  27. Post LE, Nomura M. 1980. DNA sequences from the str operon of Escherichia coli. J. Biol. Chem. 255: 4660-4666.
  28. Rabadan R, Levine AJ, Robins H. 2006. Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes. J. Virol. 80: 11887-11891. https://doi.org/10.1128/JVI.01414-06
  29. Romero H, Zavala A, Musto H. 2000. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 28: 2084-2090. https://doi.org/10.1093/nar/28.10.2084
  30. Shackelton LA, Parrish CR, Holmes EC. 2006. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J. Mol. Evol. 62: 551-563. https://doi.org/10.1007/s00239-005-0221-1
  31. Sharp PM, Li WH. 1987. The codon adaptation index - a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281-1295. https://doi.org/10.1093/nar/15.3.1281
  32. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1122-1125. https://doi.org/10.1038/nature08182
  33. Sueoka N. 1988. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 85: 2653-2657. https://doi.org/10.1073/pnas.85.8.2653
  34. Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, et al. 2005. Probable person-toperson transmission of avian influenza A (H5N1). N. Engl. J. Med. 352: 333-340. https://doi.org/10.1056/NEJMoa044021
  35. Wong EH, Smith DK, Rabadan R, Peiris M, Poon LL. 2010. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol. Biol. 10: 253. https://doi.org/10.1186/1471-2148-10-253
  36. Wright F. 1990. The 'effective number of codons' used in a gene. Gene 87: 23-29. https://doi.org/10.1016/0378-1119(90)90491-9
  37. Xiang H, Zhang R, Butler RR 3rd, Liu T, Zhang L, Pombert JF, Zhou Z. 2015. Comparative analysis of codon usage bias patterns in microsporidian genomes. PLoS One 10: e0129223. https://doi.org/10.1371/journal.pone.0129223
  38. Zhong J, Li Y, Zhao S, Liu S, Zhang Z. 2007. Mutation pressure shapes codon usage in the GC-rich genome of footand- mouth disease virus. Virus Genes 35: 767-776. https://doi.org/10.1007/s11262-007-0159-z
  39. Zhou T, Gu W, Ma J, Sun X, Lu Z. 2005. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 81: 77-86.

피인용 문헌

  1. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area vol.30, pp.3, 2016, https://doi.org/10.1007/s13577-017-0168-8
  2. Constraints of Viral RNA Synthesis on Codon Usage of Negative-Strand RNA Virus vol.93, pp.5, 2016, https://doi.org/10.1128/jvi.01775-18
  3. Codon usage pattern and its influencing factors in different genomes of hepadnaviruses vol.165, pp.3, 2016, https://doi.org/10.1007/s00705-020-04533-6
  4. Codon pair optimization (CPO): a software tool for synthetic gene design based on codon pair bias to improve the expression of recombinant proteins in Pichia pastoris vol.20, pp.1, 2016, https://doi.org/10.1186/s12934-021-01696-y