References
- Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O. 1981. Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett. 130: 179-183. https://doi.org/10.1016/0014-5793(81)81114-3
- Ameyama M, Shinagawa E, Matsushita K, Adachi O. 1985. Solubilization, purification and properties of membranebound glycerol dehydrogenase from Gluconobacter industrius. Agric. Biol. Chem. 49: 1001-1010.
- Bicker M, Endres S, Ott L, Vogel H. 2005. Catalytical conversion of carbohydrates in subcritical water: a new chemical process for lactic acid production. J. Mol. Catal. A Chem. 239: 151-157. https://doi.org/10.1016/j.molcata.2005.06.017
- Black CS, Nair GR. 2013. Bioconversion of glycerol to dihydroxyacetone by immobilized Gluconacetobacter xylinus cells. Int. J. Chem. Eng. Appl. 4: 310-314.
- Brenner DJ, Krieg NR, Staley JT, Garrity GM. 2005. Genus VIII. Gluconacetobacter, pp. 72-73. In Brenner DJ, Krieg NR, Staley JT (eds.), Bergey's Manual of Sytematic Bacteriology, 2nd Ed. Springer Science+Business Media, New York.
- Chen J, Chen JH, Zhou CL. 2008. HPLC method for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. J. Chromatogr. Sci. 46: 912-916. https://doi.org/10.1093/chromsci/46.10.912
- Enders D, Voith M, Lenzen A. 2005. The dihydroxyacetone unit - a versatile C(3) building block in organic synthesis. Angew. Chem. Int. Ed. Engl. 44: 1304-1325. https://doi.org/10.1002/anie.200400659
- Gatgens C, Degner U, Bringer-Meyer S, Herrmann U. 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Biotechnol. 76: 553-559. https://doi.org/10.1007/s00253-007-1003-z
- Guo T, Tang Y, Xi YL, He AY, Sun BJ, Wu H, et al. 2011. Clostridium beijerinckii mutant obtained by atmospheric pressure glow discharge producing high proportions of butanol and solvent yields. Biotechnol. Lett. 33: 2379-2383. https://doi.org/10.1007/s10529-011-0702-9
- Hekmat D, Bauer R, Fricke J. 2003. Optimization of the microbial synthesis of dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioprocess Biosyst. Eng. 26: 109-116. https://doi.org/10.1007/s00449-003-0338-9
- Hekmat D, Bauer R, Neff V. 2007. Optimization of the microbial synthesis of dihydroxyacetone in a semi-continuous repeated-fed-batch process by in situ immobilization of Gluconobacter oxydans. Process Biochem. 42: 71-76. https://doi.org/10.1016/j.procbio.2006.07.026
- Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T. 2003. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255 - enzymatic and genetic characterization. Biochim. Biophys. Acta 1647: 278-288. https://doi.org/10.1016/S1570-9639(03)00071-2
- Hu ZC, Liu ZQ, Xu JM, Zheng YG, Shen YC. 2012. Improvement of 1,3-dihydroxyacetone production from Gluconobacter oxydans by ion beam implantation. Prep. Biochem. Biotechnol. 42: 15-28. https://doi.org/10.1080/10826068.2011.563400
- Hu ZC, Zheng YG. 2009. A high throughput screening method for 1,3-dihydroxyacetone-producing bacterium by cultivation in a 96-well microtiter plate. J. Rapid Methods Autom. Microbiol. 17: 233-241. https://doi.org/10.1111/j.1745-4581.2009.00173.x
- Hu ZC, Zheng YG. 2011. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy. Appl. Biochem. Biotechnol. 165: 1152- 1160. https://doi.org/10.1007/s12010-011-9332-x
- Lapenaite I, Kurtinaitiene B, Razumiene J, Laurinavicius V, Marcinkeviciene L, BachmatovaI, et al. 2005. Properties and analytical application of PQQ-dependent glycerol dehydrogenase from Gluconobacter sp. 33. Anal. Chim. Acta 549: 140-150. https://doi.org/10.1016/j.aca.2005.06.025
- Li G, Li HP, Wang LY, Wang S, Zhao HX, Sun WT, et al. 2008. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Appl. Phys. Lett. 92: 221504. https://doi.org/10.1063/1.2938692
- Liu RM, Liang LY, Ma JF, Ren XY, Jiang M, Chen KQ, et al. 2013. An engineering Escherichia coli mutant with high succinic acid production in the defined medium obtained by the atmospheric and room temperature plasma. Process Biochem. 48: 1603-1609. https://doi.org/10.1016/j.procbio.2013.07.020
- Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, Wang G. 2013. Efficient production of dihydroxyacetone from biodieselderived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour. Technol. 142: 384-389. https://doi.org/10.1016/j.biortech.2013.05.055
- Ma L, Lu W, Xia Z, Wen J. 2010. Enhancement of dihydroxyacetone production by a mutant of Gluconobacter oxydans. Biochem. Eng. J. 49: 61-67. https://doi.org/10.1016/j.bej.2009.11.011
- Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T. 2002. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci. Biotechnol. Biochem. 66: 262-270. https://doi.org/10.1271/bbb.66.262
- Nabe K, Izuo N, Yamada S, Chibata I. 1979. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of Acetobacter xylinum. Appl. Environ. Microbiol. 38: 1056-1060.
-
Nie GJ, Yang XR, Liu H, Wang Li, Gong GH, Jin W, Zheng ZM. 2013.
$N^+$ ion beam implantation of tannase-producing and Aspergillus niger and optimization of its process parameters under submerged fermentation. Ann. Microbiol. 63: 279-287. https://doi.org/10.1007/s13213-012-0471-2 - Raska J, Skopal F, Komers K, Machek J. 2007. Kinetics of glycerol biotransformation to dihydroxyacetone by immobilized Gluconobacter oxydans and effect of reaction conditions. Collect. Czech. Chem. Commun. 72: 1269-1283. https://doi.org/10.1135/cccc20071269
- Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738. https://doi.org/10.1038/nprot.2010.5
- Ruch FE, Lin EC. 1975. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes. J. Bacteriol. 124: 348-352.
- Silva GPD, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
- Toyama H, Chen ZW, Fukumoto M, Adachi O, Matsushita K, Mathews FS. 2005. Molecular cloning and structural analysis of quinohemoprotein alcohol dehydrogenase ADHIIG from Pseudomonas putida HK5. J. Mol. Biol. 352: 91-104. https://doi.org/10.1016/j.jmb.2005.06.078
- Wang LY, Huang ZL, Li G, Zhao HX, Xing XH, Sun WT, et al. 2009. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J. Appl. Microbiol. 108: 851-858.
- Wang Q, Feng LR, Wei L, Li HG, Wang L, Zhou Y. 2014. Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl. Biochem. Biotechnol. 174: 452-460. https://doi.org/10.1007/s12010-014-0998-8
- Xu S, Wang X, Du G, Zhou J, Chen J. 2014. Enhanced production of L-sorbose from D-sorbitol by improving the mRNA abundance of sorbitol dehydrogenase in Gluconobacter oxydans WSH-003. Microb. Cell Fact. 13: 146. https://doi.org/10.1186/s12934-014-0146-8
- Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. 2014. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12: 7-8. https://doi.org/10.1038/nmeth.3213
- Yang J, Zhang Y. 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 43: 174-181.
- Yang W, Zhou Y, Zhao ZK. 2013. Production of dihydroxyacetone from glycerol by engineered Escherichia coli cells co-expressing gldA and nox genes. Afr. J. Biotechnol. 12: 4387-4392. https://doi.org/10.5897/AJB12.1845
- Zong H, Zhan Y, Li X, Peng L, Feng F, Li D. 2012. A new mutation breeding method for Streptomyces albulus by an atmospheric and room temperature plasma. Afr. J. Microbiol. Res. 6: 3154-3158.
Cited by
- Biosynthesis of miglitol intermediate 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose by an improved d-sorbitol dehydrogenase from Gluconobacter oxydans vol.8, pp.5, 2016, https://doi.org/10.1007/s13205-018-1251-x
- Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way vol.17, pp.None, 2016, https://doi.org/10.1186/s12934-018-1001-0
- “Saddle-shaped” dose-survival effect, is it a general and valuable phenomenon in microbes in response to heavy ion beam irradiation? vol.69, pp.3, 2016, https://doi.org/10.1007/s13213-019-1442-7
- Improvement of kojic acid production in Aspergillus oryzae AR-47 mutant strain by combined mutagenesis vol.42, pp.5, 2016, https://doi.org/10.1007/s00449-019-02079-9
- Kinetic Modeling of Dihydroxyacetone Production from Glycerol by Gluconobacter oxydans ATCC 621 Resting Cells: Effect of Fluid Dynamics Conditions vol.10, pp.1, 2016, https://doi.org/10.3390/catal10010101
- Efficient Optimization of Gluconobacter oxydans Based on Protein Scaffold-Trimeric CutA to Enhance the Chemical Structure Stability of Enzymes for the Direct Production of 2-Keto-L-gulonic Acid vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5429409
- Novel mutagenesis and screening technologies for food microorganisms: advances and prospects vol.104, pp.4, 2016, https://doi.org/10.1007/s00253-019-10341-z