DOI QR코드

DOI QR Code

Residue Y70 of the Nitrilase Cyanide Dihydratase from Bacillus pumilus Is Critical for Formation and Activity of the Spiral Oligomer

  • Park, Jason M. (Department of Biology, Texas A&M University) ;
  • Ponder, Christian M. (Department of Biology, Texas A&M University) ;
  • Sewell, B. Trevor (Structural Biology Research Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town) ;
  • Benedik, Michael J. (Department of Biology, Texas A&M University)
  • Received : 2016.06.15
  • Accepted : 2016.08.25
  • Published : 2016.12.28

Abstract

Nitrilases pose attractive alternatives to the chemical hydrolysis of nitrile compounds. The activity of bacterial nitrilases towards substrate is intimately tied to the formation of large spiral-shaped oligomers. In the nitrilase CynD (cyanide dihydratase) from Bacillus pumilus, mutations in a predicted oligomeric surface region altered its oligomerization and reduced its activity. One mutant, CynD Y70C, retained uniform oligomer formation however it was inactive, unlike all other inactive mutants throughout that region all of which significantly perturbed oligomer formation. It was hypothesized that Y70 is playing an additional role necessary for CynD activity beyond influencing oligomerization. Here, we performed saturation mutagenesis at residue 70 and demonstrated that only tyrosine or phenylalanine is permissible for CynD activity. Furthermore, we show that other residues at this position are not only inactive, but have altered or disrupted oligomer conformations. These results suggest that Y70's essential role in activity is independent of its role in the formation of the spiral oligomer.

Keywords

References

  1. Abou Nader M. 2012. Directed evolution of cyanide degrading enzymes. Doctoral dissertation. Texas A&M University, TX.
  2. Fisher FB, Brown JS. 1952. Colorimetric determination of cyanide in stack gas and waste water. Anal. Chem. 24: 1440-1444. https://doi.org/10.1021/ac60069a014
  3. Jandhyala D, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ. 2003. CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies. Appl. Environ. Microbiol. 69: 4794-4805. https://doi.org/10.1128/AEM.69.8.4794-4805.2003
  4. Kimani SW, Agarkar VB, Cowan DA, Sayed MF, Sewell BT. 2007. Structure of an aliphatic amidase from Geobacillus pallidus RAPc8. Acta Crystallogr. D Biol. Crystallogr. 63: 1048-1058. https://doi.org/10.1107/S090744490703836X
  5. Kumaran D, Eswaramoorthy S, Gerchman SE, Kycia H, Studier FW, Swaminathan S. 2003. Crystal structure of a putative CN hydrolase from yeast. Proteins 52: 283-291. https://doi.org/10.1002/prot.10417
  6. Lundgren S, Lohkamp B, Andersen B, Piskur J, Dobritzsch D. 2008. The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly. J. Mol. Biol. 377: 1544-1559. https://doi.org/10.1016/j.jmb.2008.02.011
  7. Meyers PR, Rawlings DE, Woods DR, Lindsey GG. 1993. Isolation and characterization of a cyanide dihydratase from Bacillus pumilus C1. J. Bacteriol. 175: 6105-6112. https://doi.org/10.1128/jb.175.19.6105-6112.1993
  8. Muezzinoglu A. 2003. A review of environmental considerations on gold mining and production. Crit. Rev. Environ. Sci. Technol. 33: 45-71. https://doi.org/10.1080/10643380390814451
  9. Nagasawa T, Wieser M, Nakamura T, Iwahara H, Yoshida T, Gekko K. 2000. Nitrilase of Rhodococcus rhodochrous J1. Conversion into the active form by subunit association. Eur. J. Biochem. 267: 138-144. https://doi.org/10.1046/j.1432-1327.2000.00983.x
  10. Pace HC, Brenner C. 2001. The nitrilase superfamily: classification, structure and function. Genome Biol. 2: reviews0001.1-reviews0001.9.
  11. Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, et al. 2000. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr. Biol. 10: 907-917. https://doi.org/10.1016/S0960-9822(00)00621-7
  12. Park JM, Mulelu A, Sewell BT, Benedik MJ. 2015. Probing an interfacial surface in the cyanide dihydratase from Bacillus pumilus, a spiral forming nitrilase. Front. Microbiol. 6: 1479.
  13. Sewell BT, Berman MN, Meyers PR, Jandhyala D, Benedik MJ. 2003. The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. Structure 11: 1413-1422. https://doi.org/10.1016/j.str.2003.10.005
  14. Sewell BT, Thuku RN, Zhang X, Benedik MJ. 2005. Oligomeric structure of nitrilases: effect of mutating interfacial residues on activity. Ann. NY Acad. Sci. 1056: 153-159. https://doi.org/10.1196/annals.1352.025
  15. Thuku RN, Brady D, Benedik MJ, Sewell BT. 2009. Microbial nitrilases: versatile, spiral forming, industrial enzymes. J. Appl. Microbiol. 106: 703-727. https://doi.org/10.1111/j.1365-2672.2008.03941.x
  16. Thuku RN, Weber BW, Varsani A, Sewell BT. 2007. Posttranslational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J. 274: 2099-2108. https://doi.org/10.1111/j.1742-4658.2007.05752.x
  17. Wang L, Watermeyer JM, Mulelu AE, Sewell BT, Benedik MJ. 2012. Engineering pH-tolerant mutants of a cyanide dihydratase. Appl. Microbiol. Biotechnol. 94: 131-140. https://doi.org/10.1007/s00253-011-3620-9