DOI QR코드

DOI QR Code

Supragingival Plaque Microbial Community Analysis of Children with Halitosis

  • Ren, Wen (Department of Preventive Dentistry, Peking University School and Hospital of Stomatology) ;
  • Zhang, Qun (Department of Preventive Dentistry, Peking University School and Hospital of Stomatology) ;
  • Liu, Xuenan (Department of Preventive Dentistry, Peking University School and Hospital of Stomatology) ;
  • Zheng, Shuguo (Department of Preventive Dentistry, Peking University School and Hospital of Stomatology) ;
  • Ma, Lili (Stomatology Center, China-Japan Friendship Hospital) ;
  • Chen, Feng (Central Laboratory, Peking University School and Hospital of Stomatology) ;
  • Xu, Tao (Department of Preventive Dentistry, Peking University School and Hospital of Stomatology) ;
  • Xu, Baohua (Stomatology Center, China-Japan Friendship Hospital)
  • Received : 2016.05.09
  • Accepted : 2016.09.04
  • Published : 2016.12.28

Abstract

As one of the most complex human-associated microbial habitats, the oral cavity harbors hundreds of bacteria. Halitosis is a prevalent oral condition that is typically caused by bacteria. The aim of this study was to analyze the microbial communities and predict functional profiles in supragingival plaque from healthy individuals and those with halitosis. Ten preschool children were enrolled in this study; five with halitosis and five without. Supragingival plaque was isolated from each participant and 16S rRNA gene pyrosequencing was used to identify the microbes present. Samples were primarily composed of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Candidate phylum TM7. The ${\alpha}$ and ${\beta}$ diversity indices did not differ between healthy and halitosis subjects. Fifteen operational taxonomic units (OTUs) were identified with significantly different relative abundances between healthy and halitosis plaques, and included the phylotypes of Prevotella sp., Leptotrichia sp., Actinomyces sp., Porphyromonas sp., Selenomonas sp., Selenomonas noxia, and Capnocytophaga ochracea. We suggest that these OTUs are candidate halitosis-associated pathogens. Functional profiles were predicted using PICRUSt, and nine level-3 KEGG Orthology groups were significantly different. Hub modules of co-occurrence networks implied that microbes in halitosis dental plaque were more highly conserved than microbes of healthy individuals' plaque. Collectively, our data provide a background for the oral microbiota associated with halitosis from supragingival plaque, and help explain the etiology of halitosis.

Keywords

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43: 5721-5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  2. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. 2013. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 7: 1016-1025. https://doi.org/10.1038/ismej.2012.174
  3. Ahn JY, Yang LY, Paster BJ, Ganly I, Morris L, Pei ZH, Hayes RB. 2011. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One 6: e22788. https://doi.org/10.1371/journal.pone.0022788
  4. Aylikci BU, Colak H. 2013. Halitosis: from diagnosis to management. J. Nat. Sci. Biol. Med. 4: 14-23. https://doi.org/10.4103/0976-9668.107255
  5. Bollen CM, Beikler T. 2012. Halitosis: the multidisciplinary approach. Int. J. Oral Sci. 4: 55-63. https://doi.org/10.1038/ijos.2012.39
  6. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. 2010. The human oral microbiome database: a Web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010: baq013.
  7. Clarridge JE 3rd, Zhang Q. 2002. Genotypic diversity of clinical Actinomyces species: phenotype, source, and disease correlation among genospecies. J. Clin. Microbiol. 40: 3442- 3448. https://doi.org/10.1128/JCM.40.9.3442-3448.2002
  8. Desai SS, Harrison RA, Murphy MD. 2007. Capnocytophaga ochracea causing severe sepsis and purpura fulminans in an immunocompetent patient. J. Infect. 54: e107-e109. https://doi.org/10.1016/j.jinf.2006.06.014
  9. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. 2010. The human oral microbiome. J. Bacteriol. 192: 5002-5017. https://doi.org/10.1128/JB.00542-10
  10. Diaz PI, Dupuy AK, Abusleme L, Reese B, Obergfell C, Choquette L, et al. 2012. Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol. Oral Microbiol. 27: 182-201. https://doi.org/10.1111/j.2041-1014.2012.00642.x
  11. Donaldson AC, McKenzie D, Riggio MP, Hodge PJ, Rolph H, Flanagan A, Bagg J. 2005. Microbiological culture analysis of the tongue anaerobic microflora in subjects with and without halitosis. Oral Dis. 11: 61-63. https://doi.org/10.1111/j.1601-0825.2005.01094.x
  12. Eribe ER, Olsen I. 2008. Leptotrichia species in human infections. Anaerobe 14: 131-137. https://doi.org/10.1016/j.anaerobe.2008.04.004
  13. Eribe ER, Paster BJ, Caugant DA, Dewhirst FE, Stromberg VK, Lacy GH, Olsen I. 2004. Genetic diversity of Leptotrichia and description of Leptotrichia goodfellowii sp. nov., Leptotrichia hofstadii sp. nov., Leptotrichia shahii sp. nov. and Leptotrichia wadei sp. nov. Int. J. Syst. Evol. Microbiol. 54: 583-592. https://doi.org/10.1099/ijs.0.02819-0
  14. Hughes FJ, McNab R. 2008. Oral malodour - a review. Arch. Oral Biol. 53: S1-S7. https://doi.org/10.1016/S0003-9969(08)70002-5
  15. Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486: 215-221. https://doi.org/10.1038/nature11209
  16. Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ. 2003. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J. Clin. Microbiol. 41: 558-563. https://doi.org/10.1128/JCM.41.2.558-563.2003
  17. Kleinberg I, Westbay G. 1990. Oral malodor. Crit. Rev. Oral Biol. Med. 1: 247-259. https://doi.org/10.1177/10454411900010040401
  18. Krespi YP, Shrime MG, Kacker A. 2006. The relationship between oral malodor and volatile sulfur compoundproducing bacteria. Otolaryngol. Head Neck Surg. 135: 671-676. https://doi.org/10.1016/j.otohns.2005.09.036
  19. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
  20. Marsh PD. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149: 279-294. https://doi.org/10.1099/mic.0.26082-0
  21. Marsh PD. 2006. Dental diseases - are these examples of ecological catastrophes? Int. J. Dent. Hyg. 4: 3-10; discussion 50-12. https://doi.org/10.1111/j.1601-5037.2006.00195.x
  22. Ning J, Beiko RG. 2015. Phylogenetic approaches to microbial community classification. Microbiome 3: 47. https://doi.org/10.1186/s40168-015-0114-5
  23. Persson S, Edlund MB, Claesson R, Carlsson J. 1990. The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol. Immunol. 5: 195-201. https://doi.org/10.1111/j.1399-302X.1990.tb00645.x
  24. Ren W, Xun Z, Wang Z, Zhang Q, Liu X, Zheng H, et al. 2016. Tongue coating and the salivary microbial communities vary in children with halitosis. Sci. Rep. 6: 24481. https://doi.org/10.1038/srep24481
  25. Rosenstein ED, Weissmann G, Greenwald RA. 2009. Porphyromonas gingivalis, periodontitis and rheumatoid arthritis. Med. Hypotheses 73: 457-458.
  26. Samnieng P, Ueno M, Shinada K, Zaitsu T, Kawaguchi Y. 2012. Daily variation of oral malodour and related factors in community-dwelling elderly Thai. Gerodontology 29: E964-E971. https://doi.org/10.1111/j.1741-2358.2011.00593.x
  27. Scully C, Greenman J. 2008. Halitosis (breath odor). Periodontology 2000 48: 66-75. https://doi.org/10.1111/j.1600-0757.2008.00266.x
  28. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60
  29. Takeshita T, Suzuki N, Nakano Y, Yasui M, Yoneda M, Shimazaki Y, et al. 2012. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production. Sci. Rep. 2: 215. https://doi.org/10.1038/srep00215
  30. Tanaka M, Yamamoto Y, Kuboniwa M, Nonaka A, Nishida N, Maeda K, et al. 2004. Contribution of periodontal pathogens on tongue dorsa analyzed with real-time PCR to oral malodor. Microbes Infect. 6: 1078-1083. https://doi.org/10.1016/j.micinf.2004.05.021
  31. Tanaka S, Yoshida M, Murakami Y, Ogiwara T, Shoji M, Kobayashi S, et al. 2008. The relationship of Prevotella intermedia, Prevotella nigrescens and Prevotella melaninogenica in the supragingival plaque of children, caries and oral malodor. J. Clin. Pediatr. Dent. 32: 195-200. https://doi.org/10.17796/jcpd.32.3.vp657177815618l1
  32. Tanner AC. 2015. Anaerobic culture to detect periodontal and caries pathogens. J. Oral Biosci. 57: 18-26. https://doi.org/10.1016/j.job.2014.08.001
  33. Torresyap G, Haffajee AD, Uzel NG, Socransky SS. 2003. Relationship between periodontal pocket sulfide levels and subgingival species. J. Clin. Periodontol. 30: 1003-1010. https://doi.org/10.1034/j.1600-051X.2003.00377.x
  34. Tyrrell KL, Citron DM, Warren YA, Nachnani S, Goldstein EJC. 2003. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe 9: 243-246. https://doi.org/10.1016/S1075-9964(03)00109-4
  35. Washio J, Sato T, Koseki T, Takahashi N. 2005. Hydrogen sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J. Med. Microbiol. 54: 889-895. https://doi.org/10.1099/jmm.0.46118-0
  36. Xu H, Hao W, Zhou Q, Wang W, Xia Z, Liu C, et al. 2014. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One 9: e89269. https://doi.org/10.1371/journal.pone.0089269
  37. Xu X, He JZ, Xue J, Wang Y, Li K, Zhang KK, et al. 2015. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 17: 699-710. https://doi.org/10.1111/1462-2920.12502
  38. Yang F, Huang S, He T, Catrenich C, Teng F, Bo C, et al. 2013. Microbial basis of oral malodor development in humans. J. Dent. Res. 92: 1106-1112. https://doi.org/10.1177/0022034513507065
  39. Yang F, Zeng X, Ning K, Liu KL, Lo CC, Wang W, et al. 2012. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 6: 1-10. https://doi.org/10.1038/ismej.2011.71
  40. Zeng B, Han S, Wang P, Wen B, Jian W, Guo W, et al. 2015. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep. 5: 9342. https://doi.org/10.1038/srep09342

Cited by

  1. Leptotrichia species in human infections II vol.9, pp.1, 2016, https://doi.org/10.1080/20002297.2017.1368848
  2. The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals vol.8, pp.5, 2016, https://doi.org/10.1128/mbio.01237-17
  3. Microbial Similarity and Preference for Specific Sites in Healthy Oral Cavity and Esophagus vol.9, pp.None, 2016, https://doi.org/10.3389/fmicb.2018.01603
  4. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals vol.11, pp.1, 2016, https://doi.org/10.1080/20002297.2019.1654786
  5. Induction and inhibition of oral malodor vol.34, pp.3, 2016, https://doi.org/10.1111/omi.12259
  6. Combining culture and culture‐independent methods reveals new microbial composition of halitosis patients' tongue biofilm vol.9, pp.2, 2016, https://doi.org/10.1002/mbo3.958
  7. Observational Cohort Study of Oral Mycobiome and Interkingdom Interactions over the Course of Induction Therapy for Leukemia vol.5, pp.2, 2016, https://doi.org/10.1128/msphere.00048-20
  8. The Role of Oral Microbiota in Intra-Oral Halitosis vol.9, pp.8, 2016, https://doi.org/10.3390/jcm9082484
  9. Dynamic Alterations of Oral Microbiota Related to Halitosis in Preschool Children vol.11, pp.None, 2016, https://doi.org/10.3389/fcimb.2021.599467
  10. Role of the oral microbiome, metabolic pathways, and novel diagnostic tools in intra-oral halitosis: a comprehensive update vol.47, pp.3, 2016, https://doi.org/10.1080/1040841x.2021.1888867
  11. Screening for prevalence and abundance of Capnocytophaga spp by analyzing NGS data: A scoping review vol.27, pp.7, 2016, https://doi.org/10.1111/odi.13573