DOI QR코드

DOI QR Code

Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm

  • Chen, Guangcun (Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University) ;
  • Lin, Huirong (Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University) ;
  • Chen, Xincai (Key Laboratory for Water Pollution Control and Environmental Safety, Zhejiang University)
  • Received : 2016.05.25
  • Accepted : 2016.08.10
  • Published : 2016.12.28

Abstract

Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a $75{\mu}m$ thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling $Cu_3(PO_4)_2$ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were $Cu_3(PO_4)_2$-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% $Cu_3(PO_4)_2$, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

Keywords

References

  1. Adaikkalam V, Swarup S. 2002. Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148: 2857-2867. https://doi.org/10.1099/00221287-148-9-2857
  2. Alvarez S, Jerez CA. 2004. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 70: 5177-5182. https://doi.org/10.1128/AEM.70.9.5177-5182.2004
  3. Atlas RM. 2005. Handbook of Media for Environmental Microbiology. Taylor and Francis, New York.
  4. Auerbach ID, Sorensen C, Hansma HG, Holden PA. 2000. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J. Bacteriol. 182: 3809-3815. https://doi.org/10.1128/JB.182.13.3809-3815.2000
  5. Canovas D, Cases I, de Lorenzo V. 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5: 1242-1256. https://doi.org/10.1111/j.1462-2920.2003.00463.x
  6. Chen GC, Chen XC, Yang YQ, H ay AG, Y u XH, Chen YX. 2011. Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-Ray fluorescence microscopy. Appl. Environ. Microbiol. 77: 4719-4727. https://doi.org/10.1128/AEM.00125-11
  7. Chen X C, H u SP, S hen CF, Dou , CM S hi J Y, et al. 2009. Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresour. Technol. 100: 330-337. https://doi.org/10.1016/j.biortech.2008.04.051
  8. Chen XC, Shi JY, Chen YX, Xu XH, Xu SY, et al. 2006. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316. https://doi.org/10.1139/w05-157
  9. Chen XC, Shi JY, Chen YX, Xu XJ, Chen LT. 2007. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Appl. Microbiol. Biotechnol. 74: 881-889. https://doi.org/10.1007/s00253-006-0592-2
  10. Danhorn T, Fuqua C. 2007. Biofilm formation by plantassociated bacteria. Annu. Rev. Microbiol. 61: 401-422. https://doi.org/10.1146/annurev.micro.61.080706.093316
  11. Espinosa-Urgel M, Kolter R, Ramos JL. 2002. Root colonization by Pseudomonas putida: love at first sight. Microbiology 148: 1-3. https://doi.org/10.1099/00221287-148-1-1
  12. Fang L, Wei X, Cai P, Huang Q, Chen H, Liang W, Rong X. 2010. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour. Technol. 102: 1137-1141.
  13. Gadd GM. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11: 271-279. https://doi.org/10.1016/S0958-1669(00)00095-1
  14. Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. 2006. Metal resistance in Candida biofilms. FEMS Microbiol. Ecol. 55: 479-491.
  15. Higham DP, Sadler PJ, Scawen MD. 1986. Effect of cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. J. Gen. Microbiol. 132: 1475-1482.
  16. Houben D, Sonnet P. 2015. Impact of biochar and rootinduced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139: 644-651. https://doi.org/10.1016/j.chemosphere.2014.12.036
  17. Hu N, Zhao B. 2007. Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol. Lett. 267: 17-22. https://doi.org/10.1111/j.1574-6968.2006.00505.x
  18. Keasling JD. 1997. Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann. NY. Acad. Sci. 829: 242-249. https://doi.org/10.1111/j.1749-6632.1997.tb48579.x
  19. Macaskie LE, Bonthrone KM, Yong P, Goddard DT. 2000. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146: 1855-1867. https://doi.org/10.1099/00221287-146-8-1855
  20. Macaskie LE, Jeong BC, Tolley MR. 1994. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol. Rev. 14: 351-367. https://doi.org/10.1111/j.1574-6976.1994.tb00109.x
  21. Meitzner G, Huang ES. 1992. Analysis of mixtures of compounds of copper using K-edge X-ray absorption spectroscopy. Fresenius J. Anal. Chem. 342: 61-64. https://doi.org/10.1007/BF00321692
  22. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808. https://doi.org/10.1046/j.1462-2920.2002.00366.x
  23. Nikolaev YA, Plakunov VK. 2007. Biofilm - "City of microbes" or an analogue of multicellular organisms? Microbiology 76: 125-138. https://doi.org/10.1134/S0026261707020014
  24. Quaranta D, McCarty R, Bandarian V, Rensing C. 2007. The copper-inducible cin operon encodes an unusual methioninerich azurin-like protein and a Pre-Q0 reductase in Pseudomonas putida KT2440. J. Bacteriol. 189: 5361-5371. https://doi.org/10.1128/JB.00377-07
  25. Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD. 2004. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl. Environ. Microbiol. 70: 7404-7412. https://doi.org/10.1128/AEM.70.12.7404-7412.2004
  26. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154. https://doi.org/10.1128/jb.184.4.1140-1154.2002
  27. Saxena D, Srivastava S. 1998. Carbon source-starvationinduced precipitation of copper by Pseudomonas putida strain S4. World J. Microbiol. Biotechnol. 14: 921-923. https://doi.org/10.1023/A:1008827623994
  28. Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188: 5945-5957. https://doi.org/10.1128/JB.00257-06
  29. Schooling SR, Hubley A, Beveridge TJ. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191: 4097-4102. https://doi.org/10.1128/JB.00717-08
  30. Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YZ, Hu TD. 2008. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302: 163-174. https://doi.org/10.1007/s11104-007-9463-6
  31. Spohna M, Treichelb NS, Cormanna M, Schloterb M, Fischerb D. 2015. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biol. Biochem. 89: 44-51. https://doi.org/10.1016/j.soilbio.2015.06.018
  32. Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6: 199-210. https://doi.org/10.1038/nrmicro1838
  33. Thomas RAP, Beswick AJ, Basnakova G, Moller R, Macaskie LE. 2000. Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J. Chem. Technol. Biotechnol. 75: 187-195. https://doi.org/10.1002/(SICI)1097-4660(200003)75:3<187::AID-JCTB206>3.0.CO;2-I
  34. Timmis KN. 2002. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ. Microbiol. 4: 779-781. https://doi.org/10.1046/j.1462-2920.2002.00365.x
  35. van Hullebusch E, Zandvoort M, Lens P. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2: 9-33. https://doi.org/10.1023/B:RESB.0000022995.48330.55
  36. Wang B, L iu P, Jiang W, Pan H, Xu R, Tang R . 2008. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. Engl. 47: 3560-3564. https://doi.org/10.1002/anie.200704718
  37. Webb SM. 2005. SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115: 1011-1014.
  38. Wentland EJ, Stewart PS, Huang CT, McFeters GA. 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol. Prog. 12: 316-321. https://doi.org/10.1021/bp9600243

Cited by

  1. Insights into the role of extracellular DNA in heavy metal adsorption vol.808, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.152067