References
- Adaikkalam V, Swarup S. 2002. Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148: 2857-2867. https://doi.org/10.1099/00221287-148-9-2857
- Alvarez S, Jerez CA. 2004. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 70: 5177-5182. https://doi.org/10.1128/AEM.70.9.5177-5182.2004
- Atlas RM. 2005. Handbook of Media for Environmental Microbiology. Taylor and Francis, New York.
- Auerbach ID, Sorensen C, Hansma HG, Holden PA. 2000. Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J. Bacteriol. 182: 3809-3815. https://doi.org/10.1128/JB.182.13.3809-3815.2000
- Canovas D, Cases I, de Lorenzo V. 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5: 1242-1256. https://doi.org/10.1111/j.1462-2920.2003.00463.x
- Chen GC, Chen XC, Yang YQ, H ay AG, Y u XH, Chen YX. 2011. Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-Ray fluorescence microscopy. Appl. Environ. Microbiol. 77: 4719-4727. https://doi.org/10.1128/AEM.00125-11
- Chen X C, H u SP, S hen CF, Dou , CM S hi J Y, et al. 2009. Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresour. Technol. 100: 330-337. https://doi.org/10.1016/j.biortech.2008.04.051
- Chen XC, Shi JY, Chen YX, Xu XH, Xu SY, et al. 2006. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308-316. https://doi.org/10.1139/w05-157
- Chen XC, Shi JY, Chen YX, Xu XJ, Chen LT. 2007. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy. Appl. Microbiol. Biotechnol. 74: 881-889. https://doi.org/10.1007/s00253-006-0592-2
- Danhorn T, Fuqua C. 2007. Biofilm formation by plantassociated bacteria. Annu. Rev. Microbiol. 61: 401-422. https://doi.org/10.1146/annurev.micro.61.080706.093316
- Espinosa-Urgel M, Kolter R, Ramos JL. 2002. Root colonization by Pseudomonas putida: love at first sight. Microbiology 148: 1-3. https://doi.org/10.1099/00221287-148-1-1
- Fang L, Wei X, Cai P, Huang Q, Chen H, Liang W, Rong X. 2010. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour. Technol. 102: 1137-1141.
- Gadd GM. 2000. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr. Opin. Biotechnol. 11: 271-279. https://doi.org/10.1016/S0958-1669(00)00095-1
- Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. 2006. Metal resistance in Candida biofilms. FEMS Microbiol. Ecol. 55: 479-491.
- Higham DP, Sadler PJ, Scawen MD. 1986. Effect of cadmium on the morphology, membrane integrity and permeability of Pseudomonas putida. J. Gen. Microbiol. 132: 1475-1482.
- Houben D, Sonnet P. 2015. Impact of biochar and rootinduced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere 139: 644-651. https://doi.org/10.1016/j.chemosphere.2014.12.036
- Hu N, Zhao B. 2007. Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiol. Lett. 267: 17-22. https://doi.org/10.1111/j.1574-6968.2006.00505.x
- Keasling JD. 1997. Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann. NY. Acad. Sci. 829: 242-249. https://doi.org/10.1111/j.1749-6632.1997.tb48579.x
- Macaskie LE, Bonthrone KM, Yong P, Goddard DT. 2000. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146: 1855-1867. https://doi.org/10.1099/00221287-146-8-1855
- Macaskie LE, Jeong BC, Tolley MR. 1994. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol. Rev. 14: 351-367. https://doi.org/10.1111/j.1574-6976.1994.tb00109.x
- Meitzner G, Huang ES. 1992. Analysis of mixtures of compounds of copper using K-edge X-ray absorption spectroscopy. Fresenius J. Anal. Chem. 342: 61-64. https://doi.org/10.1007/BF00321692
- Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, et al. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799-808. https://doi.org/10.1046/j.1462-2920.2002.00366.x
- Nikolaev YA, Plakunov VK. 2007. Biofilm - "City of microbes" or an analogue of multicellular organisms? Microbiology 76: 125-138. https://doi.org/10.1134/S0026261707020014
- Quaranta D, McCarty R, Bandarian V, Rensing C. 2007. The copper-inducible cin operon encodes an unusual methioninerich azurin-like protein and a Pre-Q0 reductase in Pseudomonas putida KT2440. J. Bacteriol. 189: 5361-5371. https://doi.org/10.1128/JB.00377-07
- Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD. 2004. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl. Environ. Microbiol. 70: 7404-7412. https://doi.org/10.1128/AEM.70.12.7404-7412.2004
- Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140-1154. https://doi.org/10.1128/jb.184.4.1140-1154.2002
- Saxena D, Srivastava S. 1998. Carbon source-starvationinduced precipitation of copper by Pseudomonas putida strain S4. World J. Microbiol. Biotechnol. 14: 921-923. https://doi.org/10.1023/A:1008827623994
- Schooling SR, Beveridge TJ. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188: 5945-5957. https://doi.org/10.1128/JB.00257-06
- Schooling SR, Hubley A, Beveridge TJ. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 191: 4097-4102. https://doi.org/10.1128/JB.00717-08
- Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YZ, Hu TD. 2008. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302: 163-174. https://doi.org/10.1007/s11104-007-9463-6
- Spohna M, Treichelb NS, Cormanna M, Schloterb M, Fischerb D. 2015. Distribution of phosphatase activity and various bacterial phyla in the rhizosphere of Hordeum vulgare L. depending on P availability. Soil Biol. Biochem. 89: 44-51. https://doi.org/10.1016/j.soilbio.2015.06.018
- Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6: 199-210. https://doi.org/10.1038/nrmicro1838
- Thomas RAP, Beswick AJ, Basnakova G, Moller R, Macaskie LE. 2000. Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes. J. Chem. Technol. Biotechnol. 75: 187-195. https://doi.org/10.1002/(SICI)1097-4660(200003)75:3<187::AID-JCTB206>3.0.CO;2-I
- Timmis KN. 2002. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ. Microbiol. 4: 779-781. https://doi.org/10.1046/j.1462-2920.2002.00365.x
- van Hullebusch E, Zandvoort M, Lens P. 2003. Metal immobilisation by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2: 9-33. https://doi.org/10.1023/B:RESB.0000022995.48330.55
- Wang B, L iu P, Jiang W, Pan H, Xu R, Tang R . 2008. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angew. Chem. Int. Ed. Engl. 47: 3560-3564. https://doi.org/10.1002/anie.200704718
- Webb SM. 2005. SIXpack: a graphical user interface for XAS analysis using IFEFFIT. Phys. Scr. T115: 1011-1014.
- Wentland EJ, Stewart PS, Huang CT, McFeters GA. 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol. Prog. 12: 316-321. https://doi.org/10.1021/bp9600243
Cited by
- Insights into the role of extracellular DNA in heavy metal adsorption vol.808, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2021.152067