References
- ABAQUS. (2010). Theory manual version 6.10-3. Providence, RI: Dassault Systemes Simulia Corp.
- ACI committee 318-11. (2011). Building code requirements for structural concrete (ACI 318-11). Farmington Hills, MI: American Concrete Institute.
- Bazant, Z. P., & Thonguthai, W. (1979). Pore pressure in heated concrete walls: theoretical prediction. Magazine of Concrete Research, 31(107), 67-76. https://doi.org/10.1680/macr.1979.31.107.67
- Beyea, S. D., Balcom, B. J., Bremner, T. W., Prado, P. J., Green, D. P., Armstrong, R. L., & Grattan-Bellew, P. E. (1998). Magnetic resonance imaging and moisture content profiles of drying concrete. Cement and Concrete Research, 28(3), 453-463. https://doi.org/10.1016/S0008-8846(98)00009-X
- Choi, J., Haj-Ali, R., & Kim, H. (2012). Integrated fire dynamic and thermomechanical modeling of a bridge under fire. Structural Engineering and Mechanics, 42(6), 815-829. https://doi.org/10.12989/sem.2012.42.6.815
- Consolazio, G. R., McVay, M. C., Rish, I. I. I., & J. W., (1998). Measurement and prediction of pore pressures in saturated cement mortar subjected to radiant heating. ACI Structural Journal, 95(5), 525-536.
- Crozier, D. A., & Sanjayan, J. G. (2000). Test of load-bearing slender reinforced concrete walls in fire. ACI Structural Journal, 97(2), 243-253.
- Dwaikat, M. B., & Kodur, V. K. R. (2009). Hydrothermal model for predicting fire-induced spalling in concrete structural systems. Fire Safety Journal, 44(3), 425-434. https://doi.org/10.1016/j.firesaf.2008.09.001
- Eurocode 2. (2006). Design of concrete structure-part 1-2: General rules-structural fire design. BS EN 1992-1-2:2006.
- Hamarthy, T. A. (1965). Effect of moisture on the fire endurance of building elements. West Conshohocken, PA: ASTM Publication STP 385, American Society of Testing and Materials.
- ISO 834-2012. (2012). ISO fire resistance test-elements of building construction, International Organization of Standardization, Geneva, Switzerland.
- Jansson, R. (2004). Measurement of thermal properties at elevated temperatures-Brandforsk project 328-031, SP Swedish National Testing and Research Institute.
- KCI design recommendations. (2012). Concrete design code and commentary. Seoul, Korea: Korea Concrete Institute. (in Korean)
- Khoylou, N. (1997). Modeling of moisture migration and spalling behavior in non-uniformly heated concrete, Ph.D. Thesis, Imperial College, UK.
- Ko, J. W., Ryu, D. W., Lee, M. H., & Lee, S. H. (2007). Study on the behavior of microstructure and spalling mechanism by heat and moisture movement in concrete under fire environment. Journal of the Architectural Institute of Korea Structure & Construction, 23(12), 107-116. (in Korean)
- Kodur, V. K. R. (2014). Properties of concrete at elevated temperatures, ISRN Civil engineering.
- Kodur, V. K. R., Dwaikat, M. M. S., & Dwaikat, M. B. (2008). High-temperature properties of concrete for fire resistance modeling of structures. ACI Materials Journal, 105(5), 517-527.
- Kodur, V. K. R., & Phan, L. (2007). Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal, 42(6), 482-488. https://doi.org/10.1016/j.firesaf.2006.10.006
- Lee, T.-G. (2009). Prediction of moisture migration of concrete including internal vaporization in fire. Journal of Korean Institute of Fire Science & Engineering, 13(5), 17-23.
- Lee, S., & Lee, C. (2013). Fire resistance of reinforced concrete bearing walls subjected to all-sided fire exposure. Materials and Structures, 46(6), 943-957. https://doi.org/10.1617/s11527-012-9945-8
- Ngo, T., Fragomeni, S., Mendis, P., & Ta, B. (2013). Testing of normal- and high- strength concrete walls subjected to both standard and hydrocarbon fires. ACI Structural Journal, 110(3), 503-510.
- NIST. (1997). Spalling phenomena of HPC and OC.
- O'Meagher, A. J., & Bennetts, I. D. (1991). Modeling of concrete walls in fire. Fire Safety Journal, 17(4), 315-335. https://doi.org/10.1016/0379-7112(91)90026-U
- Regulation for refuge and prevention of fire in building, Korea ministry of land, infrastructure and transport, 2015. (in Korean)
- Schneider, U. (1982). Behaviour of concrete at high temperatures, German committee for reinforced concrete (pp. 1-122). Berlin, Germany: Heft 377, Verlag, W. Ernst and Sohn.
- Selih, J., Sousa, A. C. M., & Bremner, T. W. (1994). Moisture and heat flow in concrete walls exposed to fire. ASCE Journal of Engineering Mechanics, 120(10), 2028-2043. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2028)
- Szoke, S. S. (2006). Resistance to fire and high temperature (pp. 274-287). Arlington, VA: Portland Cement Association, Research & Development Information.
Cited by
- Seismic Capacity Design and Retrofit of Reinforced Concrete Staggered Wall Structures vol.11, pp.2, 2016, https://doi.org/10.1007/s40069-017-0192-9
- 폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가 vol.29, pp.3, 2016, https://doi.org/10.4334/jkci.2017.29.3.237
- Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures vol.30, pp.11, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0002491
- Briefing: Non-destructive evaluation and contrasts of concrete overheated and abruptly cooled vol.171, pp.6, 2016, https://doi.org/10.1680/jstbu.17.00027
- An experimental study for the thermal behavior of composite concrete beam with slab compared with isolated beam under fire vol.431, pp.None, 2016, https://doi.org/10.1088/1757-899x/431/11/112004
- Effect of Mixture Ratios on Thermal Behaviours of High Strength Concrete Walls Exposed to Fire on Foreside vol.431, pp.None, 2018, https://doi.org/10.1088/1757-899x/431/4/042010
- Effect of Loading and Beam Sizes on the Structural Behaviors of Reinforced Concrete Beams Under and After Fire vol.12, pp.1, 2016, https://doi.org/10.1186/s40069-018-0280-5
- Fire Resistance Investigation of Simple Supported RC Beams with Varying Reinforcement Configurations vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/8625360
- Analytical studies for the effect of thickness and axial load on load bearing capacity of fire damaged concrete walls with different sizes vol.4, pp.2, 2019, https://doi.org/10.1080/24705314.2019.1603189
- Experimental investigation on the compressive strength of PFGP-covered concretes exposed to high temperature vol.10, pp.4, 2016, https://doi.org/10.1108/jsfe-11-2018-0033
- A review on research of fire-induced progressive collapse on structures vol.12, pp.3, 2016, https://doi.org/10.1108/jsfe-07-2020-0023
- Fire resistance of bi-directionally prestressed concrete under extreme fire loading vol.174, pp.9, 2016, https://doi.org/10.1680/jstbu.20.00075