DOI QR코드

DOI QR Code

Characterization of a metalloprotease from an isolate Bacillus thuringiensis 29-126 in animal feces collected from a zoological garden in Japan

  • Lee, Eun Seok (Department of Agricultural Chemistry, Sunchon National University) ;
  • Lee, Hyun Woo (Department of Pharmacy, Sunchon National University) ;
  • Lee, Dong-Hyun (Misillan Farm Co., Ltd.) ;
  • Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
  • Received : 2016.07.13
  • Accepted : 2016.09.21
  • Published : 2016.12.31

Abstract

An extracellular metalloprotease, Btmp, was partially purified from the culture supernatant of Bacillus thuringiensis 29-126, isolated from animal feces collected in a zoological garden in Japan, by ultrafiltration, ammonium sulfate precipitation, and a set of chromatography on Sephadex G-75 and High-Q. The molecular mass of the protease was estimated to be 60 kDa by SDS-PAGE. The enzyme showed optimum activity at $50^{\circ}C$ and pH 6.0, and had a half-life of 14 min at $50^{\circ}C$. The enzyme activity was not influenced by $Na^+$, $K^+$, $As^+$, $Mg^{+2}$, $Ca^{2+}$, $Ba^{2+}$, and phenylmethylsulfonyl fluoride, but it was moderately inhibited by $Zn^{+2}$ at a concentration of 1.0 mM, while the activity was significantly inhibited to less than 50 % by $Cu^{2+}$, $Co^{2+}$, $Cd^{2+}$, and ethylenediaminetetraacetic acid. Interestingly, the enzyme was activated to 178 % by 1.0 mM of $Mn^{2+}$. From these results, it may be suggested that the protease is a novel extracellular manganeseactivated metalloprotease.

Keywords

References

  1. Agasthya AS, Sharma N, Mohan A, Mahal P (2013) Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis. Cell Biochem Biophys 66: 45-51 https://doi.org/10.1007/s12013-012-9396-4
  2. Aqel H, Al-Quadan F, Yousef TK (2012) A novel neutral protease from thermophilic Bacillus strain HUTBS62. J BioSci Biotech 1: 117-123
  3. Coolbear T, Whittaker JM, Daniel RM (1992) The effect of metal ions on the activity and thermostability of the extracellular proteinase from a thermophilic Bacillus, strain EA.1. Biochem J 287: 367-374 https://doi.org/10.1042/bj2870367
  4. Donovan WP, Tan Y, Slaney AC (1997) Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl Environ Microbiol 63: 2311-2317
  5. Epremian AS, Chestukhina GG, Azizbekian RR, Netyksa EM, Rudenskaia GN (1981) Extracellular serine proteinase of Bacillus thuringiensis. Biokhimiia 4: 920-929
  6. Fogarty WM, Griffin PJ (1973) Production and purification of the metalloprotease of Bacillus polymyxa. Appl Microbiol 26: 185-190
  7. Gohar M, Gilois N, Graveline R, Garreau C, Sanchis V, Lereclus D (2005) A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics 5: 3696-3711 https://doi.org/10.1002/pmic.200401225
  8. Griffin PJ, Fogarty WM (1973) Physicochemical properties of the native, zinc- and manganese-prepared metalloprotease of Bacillus polymyxa. Appl Microbiol 26: 191-195
  9. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence. Appl Environ Microbiol 66: 2627-2630 https://doi.org/10.1128/AEM.66.6.2627-2630.2000
  10. Ibrahim KS, Muniyandi J, Karutha Pandian S (2011) Purification and characterization of manganese-dependent alkaline serine protease from Bacillus pumilus TMS55. J Microbiol Biotechnol 21: 20-27 https://doi.org/10.4014/jmb.1009.09001
  11. Kim H, Yang MJ, Jung KH, Kim J (2000) Cloning and characterization of the major extracellular neutral protease (NprM) from Bacillus megaterium ATCC 14945. Agric Chem Biotechnol 43: 147-151
  12. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  13. Lee DH, Machii J, Ohba M (2002) High frequency of Bacillus thuringiensis in feces of herbivorous animals maintained in a zoological garden of Japan. Appl Entomol Zool 37: 509-516 https://doi.org/10.1303/aez.2002.509
  14. Lee DH, Shisa N, Wasano N, Ohgushi A, Ohba M (2003) Characterization of flagellar antigens and insecticidal activities of Bacillus thuringiensis populations occurring in animal feces. Curr Microbiol 46: 287-290 https://doi.org/10.1007/s00284-002-3885-4
  15. Li E, Yousten AA (1975) Metalloprotease from Bacillus thuringiensis. Appl Microbiol 30: 354-361
  16. Lowry OH, Rosenbrough NJ, Farr AL, Randell RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275
  17. Luo X, Chen L, Huang Q, Zheng J, Zhou W, Peng D, Ruan L, Sun M (2013) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl Environ Microbiol 79: 460-468 https://doi.org/10.1128/AEM.02551-12
  18. Nisnevitch M, Sigawi S, Cahan R, NitzanY (2010) Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. israelensis. Curr Microbiol 61: 176-183 https://doi.org/10.1007/s00284-010-9593-6
  19. Oda K (2012) New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem 151: 13-25 https://doi.org/10.1093/jb/mvr129
  20. Rahman RNZA, Razak CN, Ampon K, Basri M, Zin WM, Yunus W, Salleh AB (1994) Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1. Appl Microbiol Biotechnol 40: 822-827 https://doi.org/10.1007/BF00173982
  21. Rawlings ND, Barrett AJ (1993) Evolutionary families of peptidases. Biochem J 290: 205-218 https://doi.org/10.1042/bj2900205
  22. Reddy ST, Kumar NS, Venkateswerlu G (2000) Identification and purification of the 69-kDa intracellular protease involved in the proteolytic processing of the crystal delta-endotoxin of Bacillus thuringiensis subsp. tenebrionis. FEMS Microbiol Lett 183: 63-66
  23. Sarath G, Motte RS, Wanger F (1989) Protease assay methods. In: Beynon RJ, Bond JS (eds) Proteolytic enzyme: A practical approach, IRL Press, Oxford, pp 25-55
  24. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775-806
  25. Shisa N, Wasano A, Ohgushi D, Lee H, Ohba M (2002) Extremely high frequency of common flagellar antigens between Bacillus thuingiensis and Bacillus cereus. FEMS Microbiol Lett 213: 93-96 https://doi.org/10.1111/j.1574-6968.2002.tb11291.x
  26. Shivanand P, Jayaraman G (2011) Isolation and characterization of a metal ion-dependent alkaline protease from a halotolerant Bacillus aquimaris VITP4. Indian J Biochem Biophys 48: 95-100
  27. Tan Y, Donovan WP (2000) Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from bacillus thuringiensis: effect on insecticidal crystal proteins. J Biotechnol 84: 67-72 https://doi.org/10.1016/S0168-1656(00)00328-X
  28. Tran L, Wu XC, Wong SL (1991) Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J Bacteriol 173: 6364-6372 https://doi.org/10.1128/jb.173.20.6364-6372.1991
  29. Wang J, Xu A, Wan Y, Li Q (2013) Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Appl Biochem Biotechnol 170: 2021-2033 https://doi.org/10.1007/s12010-013-0350-8
  30. Wu JW, Chen XL (2011) Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 92: 253-262 https://doi.org/10.1007/s00253-011-3532-8
  31. Zhang Z, Hao H, Tang Z, Zou Z, Zhang K, Xie Z, Babe L, Goedegebuur F, Gu X (2015) Identification and characterization of a new alkaline thermolysin-like protease, BtsTLP1, from Bacillus thuringiensis serovar sichuansis strain MC28. J Microbiol Biotechnol 25: 1281-1290 https://doi.org/10.4014/jmb.1501.01008