DOI QR코드

DOI QR Code

Transmittance Improvement with Reversed Fishbone-Shape Electrode in Vertical Alignment Liquid Crystal Display

  • Lim, Young Jin (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Hyo Joong (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Min Su (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Gi Heon (Electronics and Telecommunications Research Institute) ;
  • Kim, Yong Hae (Electronics and Telecommunications Research Institute) ;
  • Lee, Gi-Dong (Department of Electronics Engineering, Dong-A University) ;
  • Lee, Seung Hee (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • Received : 2016.09.07
  • Accepted : 2016.11.28
  • Published : 2016.12.25

Abstract

A polymer-stabilized vertical alignment (PS-VA) mode with fishbone-shaped pixel electrode structure is mainly used in large-sized liquid crystal displays (LCDs) owing to its advantages such as wide viewing angle, good transmittance and fast response time. One drawback of this mode is a main bone electrode, which crosses in the center of a pixel. It causes the transmittance to decrease badly because LCs cannot be reoriented in this region, and thus, it is particularly unfavorable in an ultra-high-definition LCD. Here, we propose an innovative structure with the main bone electrode relocated to the edge area in a pixel, and investigate how this reverse directed fishbone-shaped pixel electrode structure affects electro-optic characteristics. The proposed structure shows enhanced electro-optic performance, such as the higher transmittance and the faster response time than the conventional VA mode with fishbone-shaped pixel electrode structure.

Keywords

References

  1. H. Mori, "The wide view (WV) film for enhancing the field of view of LCDs," J. of Disp. Technol. 1, 179-186 (2005). https://doi.org/10.1109/JDT.2005.858935
  2. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, "A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology," SID Int. Symp. Dig. Tech. Pap. 29, 1077-1080 (1998).
  3. Y. Taniguchi, H. Inoue, M. Sawasaki, Y. Tanaka, T. Hasegawa, T. Sasaki, Y. Koike, and K. Okamoto, "An ulta-high-quality MVA-LCD using a new multi-layer CF resin spacer and black-matrix," SID Int. Symp. Dig. Tech. Pap. 30, 378-381 (2000).
  4. S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi, and K. Okamoto, "A new MVA-LCD with jagged shaped pixel electrodes," SID Int. Symp. Dig. Tech. Pap. 32, 1066-1069 (2001).
  5. K. Miyachi, K. Kobayashi, Y. Yamada, and S. Mizushima, "The world's first photo alignment LCD technology applied to generation ten factory," SID Int. Symp. Dig. Tech. Pap. 41, 579-582 (2010).
  6. S. W. Park, S. H. Lim, Y. E. Choi, K.-U. Jeong, M.-H. Lee, H. S. Chang, H. S. Kim, and S. H. Lee, "Multi-domain vertical alignment liquid crtstal displays with ink-jet printed protrutions," Liq. Cryst. 39, 501-507 (2012). https://doi.org/10.1080/02678292.2012.657697
  7. K. H. Kim, K. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, "Domain divided vertical alignment mode with optimized fringe field effect," in Proc. of the 18th International Display Research Conference/Asia Display (Sheraton Walker-Hill, Korea, Sept. 1998), pp. 383-386.
  8. S. S. Kim, B. N. Berkeley, K. -H. Kim, and Jang Kun Song, "New technologies for advanced LCD-TV performance," J. Soc. Inf. Disp. 12/4, 353-359 (2004). https://doi.org/10.1889/1.1847732
  9. J. -J. Lyu, J. Sohn, H. Y. Kim, and S. H. Lee, "Recent trends on patterned vertical alignment (PVA) and fringe-field switching (FFS) liquid crystal displays for liquid crystal television applications," J. Disp. Technol. 3, 404-412 (2007). https://doi.org/10.1109/JDT.2007.900941
  10. M. Oh-E and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995). https://doi.org/10.1063/1.115309
  11. T. W. Ko, J. C. Kim, J.-H. Lee, H. C. Choi, S.-H Ji, J.-M. Choi, C.-H. Lee, and G.-D. Lee, "In-plane switching liquid crystal cell with a mixed bent electrode structure for fast response time," J. Inf. Disp. 9, 12-15 (2008). https://doi.org/10.1080/15980316.2008.9652057
  12. S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998). https://doi.org/10.1063/1.122617
  13. S. H. Lee, S. L. Lee, H. Y. Kim, and T. Y. Kim, "A novel wide-viewing-angle technology: Ultra-trans $view^{TM}$," SID Int. Symp. Dig. Tech. Pap. 30, 202-205 (1999).
  14. S. H. Lee, H. Y. Kim, S. M. Lee, S. H. Hong, J. M. Kim, J. W. Koh, J. Y. Lee, and H. S. Park, "Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics," J. Soc. Inf. Disp. 10/2, 117-122 (2002). https://doi.org/10.1889/1.1827852
  15. D. H. Kim, Y. J. Lim, D. E. Kim, H. Ren, S. H. Ahn, and S. H. Lee, "Past, present, and future of fringe-field switchingliquid crystal display," J. Inf. Disp. 15, 99-106 (2014). https://doi.org/10.1080/15980316.2014.914982
  16. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. Okamoto, "A new MVS-LCD by polymer sustained alignment technology," SID Int. Symp. Dig. Tech. Pap. 35, 1200-1203 (2004).
  17. S. H. Lee, S. M. Kim, and S. T. Wu, "Review paper: Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer," J. Soc. Inf. Disp. 17(7), 551-559 (2009). https://doi.org/10.1889/JSID17.7.551
  18. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of petite angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007). https://doi.org/10.1063/1.2752105
  19. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, J.-J. Lyu, K. H. Kim, R. Lu, and S.-T. Wu, "Trapping of defect point to improve response time via controlled aximuthal anchoring in a vertically aligned liquid crystal cell with polymer wall," J. Phys. D: Appl. Phys. 41, 055401 (2008). https://doi.org/10.1088/0022-3727/41/5/055401
  20. S. M. Kim, I. Y. Cho, W. I. Kim, K.-U. Jeong, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, "Surface-modification on vertical alignment layer using UV-curable reactive mesogens," Jpn. J. Appl. Phys. 48, 032405 (2009). https://doi.org/10.1143/JJAP.48.032405
  21. A. Lien, "Extended jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence," Appl. Phys. Lett. 57, 2767-2769 (1990). https://doi.org/10.1063/1.103781