DOI QR코드

DOI QR Code

Infrared-to-Visible Up-conversion in Er-Pr-Yb Triply Doped Oxyfluoride Glass Ceramics

  • Song, Su-A (Department of Aerospace Engineering, Korea Aerospace University) ;
  • Lim, Ki-Soo (Department of Physics, Chungbuk National University)
  • Received : 2016.08.30
  • Accepted : 2016.11.29
  • Published : 2016.12.25

Abstract

We synthesized $Er^{3+}-Yb^{3+}$, $Pr^{3+}-Yb^{3+}$, and $Er^{3+}-Pr^{3+}-Yb^{3+}$ -doped oxyfluoride glass ceramics containing $CaF_2$ nanocrystals by proper thermal treatments. Spectral characteristics of down- and up-converted emissions in three kinds of glass ceramics under 365-nm and 980-nm excitations were compared and explained by cross relaxations, excited-state absorptions, and energy-transfer processes between different ions. The huge reduction of up-conversion emission in the triply doped glass ceramics under 980-nm excitation compared to the $Er^{3+}-Yb^{3+}$ codoped one was explained by the split pump power and the direct energy transfer from $Er^{3+}$ to $Pr^{3+}$ ions. Increasing $Yb^{3+}$ concentration from 2% to 10% in the triply doped glass ceramics showed more than quadratic enhancement of the absorbed power, and we explained it by the enhanced energy-transfer efficiency from $Yb^{3+}$ to $Er^{3+}$ ions. We also observed enhanced up-converted emissions of $Er^{3+}$ and $Pr^{3+}$ ions in three kinds of glass ceramics under simultaneous excitation at 980 nm and 1550 nm, and suggested detailed up-conversion mechanisms.

Keywords

References

  1. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, "Upconversion nanoparticles in biological labeling, imaging, and therapy," Analyst 135, 1839-1854 (2010). https://doi.org/10.1039/c0an00144a
  2. T. R. Hinklin, S. C. Rand, and R. M. Laine, "Transparent, polycrystalline upconverting nanoceramics: towards 3-D displays," Adv. Mater. 20, 1-4 (2008). https://doi.org/10.1002/adma.200890067
  3. S. Ivanova1 and F. Pelle, "Evaluating upconversion materials developed to improve the efficiency of solar cells: reply to comment," J. Opt. Soc. Am. B 27, 1356-1358 (2010). https://doi.org/10.1364/JOSAB.27.001356
  4. Y. Wang and J. Ohwaki, "New transparent vitroceramics codoped with $Er^{3+}$ and $Yb^{3+}$ for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993). https://doi.org/10.1063/1.110170
  5. A. J. Stevenson, H. S.-Brault, P. Gredin, and M. Mortier, "Fluoride materials for optical applications: single crystals, ceramics, glasses, and glass-ceramics," J. Fluorine Chem. 132, 1165-1173 (2011). https://doi.org/10.1016/j.jfluchem.2011.07.017
  6. X. Qiao, X. Fan, J. Wang, and M. Wang, "Luminescence behavior of $Er^{3+}$ ions in glass-ceramics containing $CaF_2$ nanocrystals," J. Non-Cryst. Solids 351, 357-363 (2005). https://doi.org/10.1016/j.jnoncrysol.2004.11.021
  7. J. P. Srivastava and R. D. Singh, "Infrared lattice vibrational spectrum of $CaF_2$," J. Phys. C: Solid State Phys. 4, L47-49 (1971). https://doi.org/10.1088/0022-3719/4/2/019
  8. X. Zhang, X. Wang, Y. Qiao, and H. Guo, "Synthesis and photoluminescent properties of $Gd_3O_4Br:Er^{3+}$ phosphors prepared by solid-state reaction method," Opt. Mater. 32, 216-220 (2009). https://doi.org/10.1016/j.optmat.2009.07.013
  9. G. Chen, G. Somesfalean, Y. Liu, Z. Zhang, and Q. Sun, F. Wang, "Upconversion mechanism for two-color emission in rare-earth-ion-doped $ZrO_2$ nanocrystals," Phy. Rev. B 75, 195204 (2007). https://doi.org/10.1103/PhysRevB.75.195204
  10. C. Ming, F. Song, and L. Yan, "Spectroscopic study and green upconversion of $Pr^{3+}/Yb^{3+}$-codoped $NaY(WO_4)_2$ crystal," Opt. Commun. 286, 217-220 (2013). https://doi.org/10.1016/j.optcom.2012.08.095
  11. Y. Dwivedi, A. Rai, and S. B. Rai, "Intense white upconversion emission in Pr/Er/Yb codoped tellurite glass," J. Appl. Phys. 104, 043509 (2008) https://doi.org/10.1063/1.2969046
  12. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedures, 2nd ed. (Wiley, New York, USA, 1974).
  13. J. Tua, S. A. FitzGeralda, J. A. Campbellb, and A. J. Sievers, "Glass-like properties observed in low-frequency Raman scattering of mixed fluorite crystals," J. Non-Cryst. Solids 203, 153-158 (1996). https://doi.org/10.1016/0022-3093(96)00346-8
  14. S. A. Song, D. S. Kim, H. M. Jeong, and K. S. Lim, "Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing $CaF_2$ nanocrystals," J. Lumin. 152, 75-78 (2014). https://doi.org/10.1016/j.jlumin.2013.11.020
  15. W. J. Park, C. Liu, and J. Heo, "Direct imaging of the distribution of $Nd^{3+}$ ions in glasses containing PbS quantum dots," J. Am. Ceram. Soc. 98, 2074-2077 (2015). https://doi.org/10.1111/jace.13582
  16. M. Rozanski, K. Wisniewski, J. Szatkowski, C. Koepke, M. Sroda, "Effect of thermal treatment on excited state spectroscopy of oxyfluoride borosilicate glass activated by $Pr^{3+}$ ions," Opt. Mater. 31, 548-553 (2009). https://doi.org/10.1016/j.optmat.2007.10.022
  17. A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, "Excited states dynamics of $Er^{3+}$ in $Sc_2O_3$ ceramic," J. Lumin. 128, 918-920 (2008). https://doi.org/10.1016/j.jlumin.2007.11.032
  18. S. H. Park, D. C. Lee, J. Heo, and D. W. Shin, "Energy transfer between $Er^{3+}$ and $Pr^{3+}$ in chalcogenide glasses for dual-wavelength fiber-optic amplifiers," J. Appl. Phys. 91, 9072-9077 (2002). https://doi.org/10.1063/1.1476965
  19. Gongxun Bai, J. D., Lili Tao, Kefeng Li, Lili Hu, Yuen H. Tsang, "Efficient 2.7 micron emission from $Er^{3+}/Pr^{3+}$ codoped oxyfluorotellurite glass," J. Non-Cryst. Solids 358, 3403-3406 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.08.016
  20. D. J. Coleman, P. Golding, and T. A. King, "Spectroscopic and energy-transfer parameters for $Er^{3+}$-doped and $Er^{3+}$, $Pr^{3+}$-codoped GeGaS glasses," J. Opt. Soc. Am. 19, 1982-1989 (2002). https://doi.org/10.1364/JOSAB.19.001982
  21. F. Zhang, Z. Bi, A. Huang, and Z. Xiao, "Visible luminescence properties of $Er^{3+}/Pr^{3+}$ codoped fluorotellurite glasses," Opt. Mater. 41, 112-115 (2015). https://doi.org/10.1016/j.optmat.2014.10.029
  22. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, and A. J. Bruce, "Spectroscopic properties of $Er^{3+}$ and $Yb^{3+}$ doped soda-lime silicate and aluminosilicate glasses, Phys. Rev. B 56, 9302-9318 (1997). https://doi.org/10.1103/PhysRevB.56.9302
  23. Z. Hu, Y. Wang, E. Ma, D. Chen, and F. Bao, "Microstructures and upconversion luminescence of $Er^{3+}$ doped and $Er^{3+}/Yb^{3+}$ co-doped oxyfluoride glass ceramics," Mater. Chem. Phys. 101, 234-237 (2007). https://doi.org/10.1016/j.matchemphys.2006.04.001
  24. T. Wang, J. Zhou, S. Shi, B. Li, and R. Zong, "Preparation of size-controlled nanocrystalline infrared-to-visible upconverting phosphors $Gd_2O_3$: Yb, Er by using a water-in-oil microemulsion system," J. Electroceram. 21, 765-769 (2008). https://doi.org/10.1007/s10832-007-9294-0
  25. W. Lu, L. Cheng, H. Zhong, J. Sun, J. Wan, Y. Tian, and B. Chen, "Dependence of upconversion emission intensity on $Yb^{3+}$ concentration in $Er^{3+}/Yb^{3+}$ co-doped flake shaped $Y_2(MoO4)_3$ phosphors," J. Phys. D: Appl. Phys. 43, 085404 (2010). https://doi.org/10.1088/0022-3727/43/8/085404
  26. R. S. Yadav, R. K. Verma, A. Bahadur, S. B. Rai, "Structural characterizations and intense green upconversion emission in $Yb^{3+},\;Pr^{3+}$ co-doped $Y_2O_3$ nano-phosphor," Spectrochim. Acta Part A 137, 357-362 (2015). https://doi.org/10.1016/j.saa.2014.08.078
  27. S. Q. Man, H. L. Zhang, Y. L. Liu, J. X. Meng, E. Y. B. Pun, and P. S. Chung, "Energy transfer in $Pr^{3+}/Yb^{3+}$ codoped tellurite glasses," Opt. Mater. 30, 334-337 (2007). https://doi.org/10.1016/j.optmat.2006.11.045
  28. J. Cai, X. Wei, F. Hu, Z. Cao, L. Zhao, Y. Chen, C. Duan, and M. Yin, "Up-conversion luminescence and optical thermometry properties of transparent glassceramics containing $CaF_2:Yb/Er$ nanocrystals," Ceram. Int. 42, 13990-13995 (2016). https://doi.org/10.1016/j.ceramint.2016.06.002
  29. S. Haas, A. Hoell, R. Wurth, C. Rusel, P. Boesecke, and U. Vainio, "Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with $Er^{3+}/Yb^{3+}$," Phys. Rev. B 81, 184207 (2010). https://doi.org/10.1103/PhysRevB.81.184207
  30. Y. C. Suling, Zhao, Zhiqin Liang, Meng Han, Zheng Xu, "Optimized upconversion emission of $NaLuF_4:Er,Yb$ nanocrystals codoped with $Gd^{3+}$ ions and its mechanism," J. Alloys Comp. 593, 30-33 (2014). https://doi.org/10.1016/j.jallcom.2014.01.051
  31. Z. Liu, B. Mei, J. Song, and W. Li, "Fabrication and optical characterizations of Yb, Er codoped $CaF_2$ transparent ceramic," J. Eur. Ceram. Soc. 34, 4389-4394 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.014
  32. L. A. Diaz-Torres, O. Meza, D. Solis, P. Salas, and E. D. Rosa, "Visible upconversion emission and non-radiative direct $Yb^{3+}$ to $Er^{3+}$ energy transfer processes in nanocrystalline $ZrO_2:Yb^{3+}$, $Er^{3+}$," Opt. Laser. Eng. 49, 703-708 (2011). https://doi.org/10.1016/j.optlaseng.2010.12.010