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A multi-server queueing system with an infinite buffer and impatient customers is analyzed. The system operates 
in the finite state Markovian random environment. The number of available servers, the parameters of the batch 
Markovian arrival process, the rate of customers’ service, and the impatience intensity depend on the current 
state of the random environment and immediately change their values at the moments of jumps of the random 
environment. Dynamics of the system is described by the multi-dimensional asymptotically quasi-Toeplitz 
Markov chain. The ergodicity condition is derived. The main performance measures of the system are calculated. 
Numerical results are presented.
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1. Introduction

Classical mathematical theory of queues is developed in sug-
gestion that the intervals between customers arrival and serv-
ice times are defined as random variables with fixed known 
distributions. However, in real life, these distributions can be 
essentially changed depending on some random factors (time 
of day or night, degradation of the transmission thread due to 
technical reasons, weather conditions, temperature inversions 
in the atmosphere, frequency interference, noise caused by 
enterprises and transport, fluctuation of the distance from the 
nearest base station, parallel service of the customers having 
more high priority, various malfunctions and equipment fail-
ures, etc.). Account of the effect of random factors on the 
system operation is a very important task in the construction 
of adequate mathematical models for computation of perfor-

mance measures of a real world system. In some extent, if 
the random factors impact only on the instantaneous intensity 
of customers arrival, this effect can be easily taken into ac-
count by means of using more complicated models of the ar-
rival process than the stationary Poisson process, e.g., the 
batch Markovian arrival process (BMAP), see Chakravarthy 
(2001) and Lucantoni (1991). If the random factors impact 
on the instantaneous intensity of customers service, this ef-
fect can be easily taken into consideration by means of using 
more complicated distributions of the service time than the 
exponential one, e.g., a phase-type (PH) distribution, see Neuts 
(1981). However, if the random factors impact on the arrival, 
service (retrial, breakdown, repair, etc) processes simulta-
neously, it is necessary to analyze so called queues operating 
in a random environment (RE). The RE is assumed to be an 
external random process with a finite state space, independent 
of the queuing system. For the fixed state of the RE, the sys-
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tem operates as a classical queueing system of the corre-
sponding type. But, the parameters of the system (the arrival 
process, the distribution of the service time, etc.) instantly 
change their values with the change of the state of the RE. 

As important early work in the field of queues operating in 
RE the following publications deserve to be mentioned: Gne-
denko and Kovalenko (1966), Neuts (1978), Neuts (1981), 
O’Cinneide and Purdue (1986), Purdue (1974), Yadin and 
Syski (1979), Yechialy and Naor (1971). A brief history of the 
development of theory of queues in the RE, the reference list 
and real life examples can be found, e.g., in the papers Cor-
deiro and Kharoufeh (2012),Wu et al. (2011), Yang et al. 
(2013), and Kim et al. (2009). In Cordeiro and Kharoufeh 
(2012),an unreliable M/M/1 retrial queue in a Markovian 
random environment is analyzed via matrix-analytic methods. 
Ergodicity condition is proved and approximate distribution 
of the number of customers in the system is computed. Opt-
imization problem of choosing the arrival and service rates 
for each environment state is considered. In Wu et al. (2011) 
and Yang et al. (2013), the finite source MAP/PH/N retrial 
queue operating in a random environment is studied. In Wu 
et al. (2011), it is assumed that there is additional MAP arriv-
al process of so called negative customers. The arrival of the 
negative customer with equal probability goes to any busy 
server to remove the customer being in service. In Wu et al. 
(2011) and Yang et al. (2013), the finite state multi-dimen-
sional Markov chain describing the behavior of the systems 
is investigated. The algorithms for calculating the stationary 
state probabilities are elaborated. Main performance meas-
ures are obtained and the illustrative numerical examples are 
presented.

In Kim et al. (2009), the BMAP/PH/N/N queue operating 
in the RE is investigated. The arrival flow is described by the 
batch Markov arrival process (BMAP). The system does not 
have a buffer. An arriving customer who did not succeed to 
find a free server upon arrival is lost. Due to possibility of 
batch arrivals, disciplines of partial admission, complete ad-
mission and complete rejection are analyzed. The stationary 
distribution of the system states and the waiting time dis-
tribution are computed. Numerical illustrations are presented. 
In particular, it is demonstrated that reasonable engineering 
approximations of performance measures of the system may 
be very poor. In Kim et al. (2007), the BMAP/PH/1/1 queue 
operating in the RE with account of retrials of customers, 
which do not succeed to get access immediately upon arrival, 
is investigated. For background information and an overview 
of the present state of the art in the study of queueing sys-
tems operating in the RE, the reader is referred also to the pa-
pers Wu et al. (2011), Yang et al. (2013), Kim et al. (2009), 
Kim et al. (2007), Krieger et al. (2005), and Takine (2005), 
as well as references therein.

In this paper, we analyze a multi-server queueing system 
with an infinite buffer operating in the RE. The main contri-
bution of our paper is the assumption that not only the para-
meters of service and arrival process, but also the number of 

available servers depends on the state of the RE. To the best 
of our knowledge, in all existing papers devoted to analysis 
of queues operating in the RE, the influence of the RE on the 
number of available servers is not considered. The recent pa-
per Kim et al. (2014) deals with a very general model of the 
system in the RE with two types of arriving customers and 
different distributions of service times. However, the number 
of servers in Kim et al. (2014) is assumed to be permanent, 
not depending on the state of the RE, while in this paper we 
allow such dependence. It is worth to note that the unreliable 
multi-server queues are a very special example of queues 
with the random number of available servers, however, to the 
best of our knowledge, such queues are also not considered 
in the literature in assumption that the arrival and service 
processes parameters depend on the RE.

In the paper, behavior of the system is described by the 
continuous time multi-dimensional Markov chain that belongs 
to the class of asymptotically quasi-Toeplitz Markov chains, 
see Klimenok and Dudin (2006). This greatly facilitates anal-
ysis of the system.

The rest of the paper consists of the following. In the next 
section, the mathematical model is described in detail. The 
process of the system states as a multi-dimensional continuous 
time Markov chain is described in section 3. The generator of 
this Markov chain is presented. The ergodicity condition for 
this Markov chain and the problem of computation of its sta-
tionary distribution are discussed here. Formulas for compu-
tation of some performance measures are obtained in section 
4. Some numerical examples showing feasibility of the pre-
sented algorithmic results and dependencies of some per-
formance measures on the number of available servers at dif-
ferent states of the RE are presented in section 5. Section 6 
concludes the paper.

2. Mathematical Model

We analyse a multi-server queueing system with an infinite 
buffer operating in the Markovian RE. The structure of the 
system under study is represented in <Figure 1>.

Figure 1. Queueing System under Study
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Behavior of the system depends on the state of the RE. The 
RE is given by the stochastic process  ≥ , which is an 
irreducible regular continuous time Markov chain with the 
state space   ⋯ and the infinitesimal generator H. 
The vector d of the stationary distribution of the RE is de-
fined as the unique solution of the system of equations 

    .

Here and in the sequel e(0) is a column (row) vector of ap-
propriate size consisting of 1’s (0’s).

Under the fixed state r of the RE, the number of available 
servers is ,  . Without loss of generality we as-
sume that the states of the RE are enumerated in such a way 
that number of available servers increases with the increase 
of the number of the state of the RE, i.e., 

≤≤ ≤ ⋯ ≤.

The customers arrive to the system according to the swit-
ching batch Markovian arrival process. The arrival of cus-
tomers is directed by the stochastic process  ≥ , with 
the finite state space   ⋯. Under the fixed state r of 
the RE, this process behaves as an irreducible continuous 
time Markov chain. The intensities of the transitions of the 
chain  ≥ , which are not accompanied by arrival, are 
described by the matrix , and the transitions, which are 
accompanied by arrival of k-size batch, are described by the 
matrix ,  ≥   .

Let us denote by  


∞


  ≤ , the matrix 

generating function of the matrices , ≥ . The matrix 
  for each   , is the irreducible generator. 
Under the fixed state r of the RE, the average intensity  
(fundamental rate) of the BMAP is defined as 

   ′   
and the intensity  of batch arrivals is defined as 


  

 .

Here  is the unique solution to the system  
 ,    . The coefficient of variation   of intervals 
between arrival of batches is given by 


   


,

while the correlation coefficient   of intervals between 
successive batch arrivals is calculated as 

        
              .

Let us introduce the following notations:

• I is the identity matrix and O is a zero matrix of appro-
priate dimension;

•⊗ indicates the symbol of Kronecker product of matrices, 
see Graham (1981);

•  ;
•  ⊗ 

  ;
•  

     ,
•   is a diagonal matrix with the diagonal 

entries   .

The averaged (over the stationary distribution of the states 
of the RE) intensity  of input flow of customers is defined 
as 

  


∞

   ,

and the intensity  of batch arrivals is defined as 

  
 

where the vector q is the unique solution to the system 




∞
     .

The squared coefficient of variation   of intervals be-
tween successive arrivals is given as 

   


.

The coefficient of correlation   of two successive inter-
vals between arrivals is given as 

  





∞



 .

We assume that during the epochs of the transitions of the 
process  ≥ , the states of the process  ≥ , do not 
change, only the intensities of the further transitions of this 
process change.

If there are idle active servers during an arbitrary batch ar-
rival epoch, the customers from the batch occupy the corre-
sponding number of servers. If the number of idle servers is 
insufficient, then some part of the batch occupies all idle 
servers while the rest of the batch goes to the buffer. If all 
servers are busy during an arbitrary batch arrival epoch, all 
customers from the batch join the buffer.

We suppose that when the transition of the RE leads to the 
reduction of the number of active servers, at first the number 
of free servers decreases, and if that is not enough, then serv-
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ice of the corresponding number of customers is terminated. 
We assume that all customers whose service was terminated 
due to reducing the number of active servers return to the 
buffer. If the transition of the RE leads to the increase of the 
number of active servers, we suppose that the corresponding 
number of customers waiting in the buffer, if any, occupies 
the free additional servers.

The customers in the buffer are assumed to be impatient. 
Under the fixed state r of the RE, each waiting customer 
leaves the buffer due to the lack of service after an exponen-
tially distributed with the parameter ,  ≥    
time, independently of other customers.

The probability of the customer service completion in an 
interval of infinitesimal length    under the fixed state 
r of the RE is equal to   .

Our aim is to analyze stationary behavior of the described 
system.

3. Process of System States and 
Stationary Distribution

Let   ≥ , be the number of customers in the system, 
  
 , be the state of the RE,    , be the state 

of the underlying process of the BMAP during the epoch 
 ≥ .

It is easy to see that the stochastic process      
≥ , is the regular irreducible continuous time Markov 
chain.

Let us enumerate the states of the Markov chain  in the 
lexicographic order of the components (i, r, v) and let A be 
the generator of this chain.

Lemma 1: The generator A has the following upper-Hessen-
bergian structure : 

 









    ⋯
    ⋯
    ⋯
    ⋯
⋮ ⋮ ⋮ ⋮ ⋱

.

The non-zero blocks    ≥ , of generator have the 
following form :

   ′  ′ 
   

 
  

  ,

   
    

                      ,
 ′  ′   ′  ≠′ ,
 

 ≥  ≥ ,

      

  ,

        
                 .

The proof of the lemma is performed by means of careful 
analysis of possible transitions of the Markov chain during 
the interval having the infinitesimal length. 

Remark 1: It can be verified that the following limits exist

  lim
→∞

,   lim

→∞

 ,

  lim
→∞

,  ,

where the matrix   is a diagonal matrix with the diagonal 
entries defined as the moduli of the corresponding diagonal 
entries of the matrix   ≥ , and the explicit form of ma-
trices  ≥ , is the following: 

  ⋯,

 










 ⋯



 ⋯


⋮ ⋮ ⋱ ⋮

 ⋮



,

  ⋯    ,

where

 ′      ′′    ′  ,

 


  


     ,
    

     
 ,

   
  


  ,

 indicates the Kronecker delta,  is the diagonal ma-
trix the diagonal entries of which are defined as the corre-
sponding diagonal entries of the matrix . 

According to definition of continuous-time asymptotically 
quasi-Toeplitz Markov chains (AQTMC) given in Klimenok 
and Dudin (2006), existence of the limits   , implies 
that the Markov chain  ≥ , belongs to the class of AQTMC. 
So, we can use the results from Klimenok and Dudin (2006) 
to analyze this chain, in particular, to derive the ergodicity 
condition for this chain.

As the first step in analysis of the Markov chain  ≥ , 
we have to derive the sufficient condition for the existence of 
the stationary distribution of this Markov chain. In deriva-
tions, we need to separate two cases : the case when    
at least for one state r of the RE,  , and the case when 
   (customers are absolutely patient) for all  . It 
can be verified that in the former case the Markov chain  is 
ergodic for any set of parameters of the queueing system un-
der study.
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Let us now consider the latter case   ,  . One 
can see that in this case the blocks of the generator for 
   have the following form : 

    ′  ′  ,
   

 
,

 ′  ′   ′  ≠′ ,
  

  ≥    ,
     ,

and do not depend on i. In this case, as follows from Klimenok 
and Dudin (2006), the necessary and sufficient condition for 
the ergodicity of the QTMC is the fulfillment of the follow-
ing inequality 

  


∞

  (1)

where the vector x is the unique solution to the system 


 

∞

     .

Theorem 1. If    for all states r of the RE,   , 
then the Markov chain  ≥ , is ergodic if and only if the 
following inequality holds true : 







   (2)

where   , are the components of the vector d that 
defines the stationary distribution of the RE.

Proof. Let us consider the matrix  


∞

 which has the 

form 

⊗


∞


   

It is easy to see, that  


∞
. Hence, the vector x co-

incides with the vector q. So, the right side of inequality (1) 
can be rewritten as 




∞

   


∞

   


∞

  

The left hand side of inequality (1) can be rewritten as 

    ⊗ 
           ⋯   

where

  lim→∞     ⋯ lim→∞     .
Using the so called mixed product rule, see Graham (1981), 

it can be easily verified that 

        ⊗  
            ⋯  ⊗  

So, 

    ⋯  ⊗ 
   ⋯ 

   .          (3)

Taking into account that    , the right hand side of 

equality (3) can be rewritten in the form 




 
 . Thus, 

the theorem is proved.

Remark 2. Inequality (2) is intuitively tractable. The right hand 
side is the average arrival rate while the left hand side is the 
average customers departure rate from the overloaded system. 
It is intuitively clear that the system is stable (the underlying 
Markov chain is ergodic) if the customers arrival rate is less 
than the maximal possible service rate.

If the ergodicity condition holds true, the following limits 
(stationary probabilities) exist : 

  lim
→∞
           

            ≥     .

Let us form the row vectors  as follows: 

          ⋯    ,
      ⋯    ≥ .

It is well known that the probability vectors  ≥ , sat-
isfy the following system of linear algebraic equations (so 
called equilibrium or Chapman-Kolmogorov equations) : 

 ⋯   ⋯  . (4)

System (4) is infinite one and, so, it cannot be directly sol-
ved on computer. But the probability vectors  ≥ , can 
be computed by means of the numerically stable algorithm 
that is developed in Klimenok and Dudin (2006) based on the 
derivation of another system of equations for these vectors 
with the use of notion of a censored Markov chain.

4. Performance Measures of the System

Having computed the vectors of the stationary probabilities 
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 ≥ , it is possible to compute the performance measures 
of the system.

The stationary distribution of the number of the customers 
in the system is 

lim
→∞
    ≥ .

The average number of customers in the system is  




∞

 .

The average number of busy servers is 

 


∞






    .

The average number of customers in the buffer is 

 


∞






   

The intensity of output flow of customers is 

 


∞






    .

The loss probability of an arbitrary customer is 

 


 



∞






    .

Remark 3. The fact that we have two alternative formulas for 
computation of the loss probability  can be helpful at 
the stage of verification of computer work. 

5. Numerical Results

Let us consider the following set of the system parameters. 
The number of the states of the RE is R = 2. The generator of 
the RE is given by 

   
 

,

so the stationary probability of state 1 is    and the sta-
tionary probability of state 2 is   .

To construct the arrival processes, let us fix the matrices 

    
 

,     
 

.

The arrival process is defined by the matrices , 



 ,   , in the first state of 

the RE nd by the matrices  ,  
 ,    in the second state of the RE. Here 
 , . Arrival processes in both states of the RE 
have the coefficient of variation equal to 12.34 and the co-
efficient of correlation equal to 0.2. Average intensities are 
equal to    and   , correspondingly.

The rest of the system parameters under state 1 of the RE 
are as follows : 

     .

Under state 2 of the RE, the parameters are as follows : 

     .

Let us vary the number of available servers,  and , 
under the different states of the RE in the following way : 

∈ , ∈  .
<Figure 2>~<Figure 4> illustrate the dependence of some per-

formance measures of the system on the values  and .

Figure 2. Dependence of the Average Number of 
Customers in the Buffer on the Numbers 
of Servers  and 

Figure 3. Dependence of the Average Number of 
Busy Servers on the Numbers of Servers 
 and 

Likely, the most important performance measure of the 
considered system is the loss probability   of an arbi-
trary customer. Because the arrival rate at different states of 
the RE may fluctuate essentially (e.g., in our numerical ex-
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periment   ) one may think about adjustment of the 
number of active servers to the current state of the RE in such 
a way as to minimize the weighted over all the states of the 
RE number of active servers under the fixed value   of ad-
missible loss probability  .

Figure 4. Dependence of the Loss Probability of 
Customers on the Numbers of Servers 
 and 

Thus, the following optimization problem arises in a natu-
ral way: 

  
 → 

subject to restriction 

    .

In application to real life systems, the necessity of mini-
mization of the value   is motivated by consideration of sal-
ary payment to operators (in contact center) or energy saving 
(in cloud computing system).

Let us fix   . Using the presented above results of 
computation of the values of performance measures of the 
system, we can compute the optimal values,  and , 
of the numbers  and  of active servers at different 
states of the RE as   and  . The optimal val-
ue   of the averaged number   of active servers is equal 
to 22. So, if we would like to provide loss probability in the 
system be less than   , we have to use, in average, 
22 servers, including 20 servers at periods of low load of the 
system (under state 1 of the RE) and 30 servers at periods of 
high load of the system.

Under the fixed above value 0.7 of the parameter q defining 
the geometrical distribution of the number of customers in an 
arbitrary arriving batch, the average batch size is equal to 
3.333. The intensities  and  are equal to    
and   , respectively. The averaged arrival rate, , 
is equal to 3.2525.     

Let now change the value of q to 0.6. In this case, the aver-
age batch size is equal to 2.5. The intensities  and  are 
equal to    and   , respectively. The aver-
aged arrival rate, , is equal to 2.9. The optimal values of 


 and  are now equal to 20, 18 and 28, respectively.

6. Conclusion

In this paper, a multi-server queueing system with an infinite 
buffer operating in the Markovian RE is analyzed. The num-
ber of active servers, as well as the parameters defining the 
arrival process, the rate of customers service, and the impa-
tience intensity depend on the state of the RE. Using the re-
sults for the asymptotically quasi-Toeplitz Markov chains we 
derived the ergodicity condition in a nice analytical form. The 
formulas for computation of the main performance measures 
of the system are presented. Results can be applied for capa-
city planning and performance evaluation of a variety of real 
life systems, including computer networks, e.g., for analysis 
of intellectual transportation communication systems. The 
number of available servers in sequential areas along the 
route of a vehicle defines the state of the RE and the changes 
of the RE are caused by the motion of a vehicle.

References

Chakravarthy, S. R. (2001), The batch Markovian arrival process : a re-
view and future work Advances, In : Krishnamoorthy A et al. (Eds.), 
Probability Theory and Stochastic Processes, NJ : Notable Publicati-
ons, 21-49.

Choi, D. I., Kim, B. K., and Lee, D. H. (2014), A Note on the M/G/1/K 
Queue with Two-Threshold Hysteresis Strategy of Service Intensity 
Switching, Journal of the Korean Operations Research and Manage-
ment Science Society, 39(3), 1-5.

Cordeiro, J. D. and Kharoufeh, J. P. (2012), The unreliable M/M/1 retrial 
queue in a random environment, Stochastic Models, 28, 29-48.

Gnedenko, B. V. and Kovalenko, I. N. (1966), Introduction to queueing 
theory, Science, Moscow.

Graham, A. (1981), Kronecker products and matrix calculus with appli-
cations, Ellis Horwood, Cichester.

Kim, C. S., Dudin, A. N., Klimenok, V. I., and Khramova, V. V. (2009), 
Erlang loss queueing system with batch arrivals operating in a random 
environment, Computers and Operations Research, 36, 674-967.

Kim, C. S., Dudin, A., Dudin, S., and Dudina, O. (2014), Analysis of 
∞  queueing system operating in a random 
environment, International Journal Applied Mathematics and Com-
puter Science, 24(3), 485-501.

Kim, C. S., Klimenok, V. I., Sang, C. L., and Dudin, A. N. (2007), The
  retrial queueing system operating in random envi-
ronment, Journal of Statistical Planning and Inference, 137, 3904- 
3916.

Kim, C. S. and Lyakhov, A. (2008), Study of Dynamic Polling in the 
IEEE 802.11 PCF, Journal of the Korean Institute of Industrials 
Engineers, 34(2), 140-150.

Klimenok, V. I. and Dudin, A. N. (2006), Multi-dimensional asymptoti-
cally quasi-Toeplitz Markov chains and their application in queueing 
theory, Queueing Systems, 54, 245-259.

Krieger, U., Klimenok, V. I., Kazimirsky, A. V., Breuer, L., and Dudin, 
A. N. (2005), A  queue with feedback operating in a 
random environment, Mathematical and Computer Modelling, 41, 



Analysis of    Type Queueing System Operating in Random Environment 37

867-882.
Lucantoni, D. (1991), New results on the single server queue with a batch 

Markovian arrival process, Communications in Statistics-Stochastic 
Models, 7, 1-46.

Neuts, M. F. (1978), The M/M/1 queue with randomly varying arrival and 
service rates, Operations Research, 15, 139-157.

Neuts, M. F. (1981), Matrix-geometric solutions in stochastic models, 
The Johns Hopkins University Press, Baltimore.

O’Cinneide, C. and Purdue, P. (1986), The M/M/\oo queue in a random 
environment, Journal of Applied Probability, 23, 175-184.

Purdue, P. (1974), The M/M/1 queue in a Markovian environment, Ope-
rations Research, 22, 562-569.

Takine, T. (2005), Single-server queues with Markov-modulated arrivals 
and service speed, Queueing Systems, 49, 7-22.

Wu, J., Liu, Z., Yang, G. (2011), Analysis of the finite source MAP/PH/N  
retrial G-queue operating in a random environment, Applied Mathe-
matical Modelling, 35, 1184-1193.

Yadin, M. and Syski, R. (1979), Randomization of intensities in a Markov 
chain, Advances in Applied Probability, 11, 397-421.

Yang, G., Yao, L. G., and Ouyang, Z. S. (2013), The MAP/PH/N retrial 
queue in a random environment, Acta Mathematicae Applicatae Sinica, 
29, 725-738.

Yechialy, U. and Naor, P. (1971), Queueing Problems with Heterogeneous 
Arrivals and Service, Operations Research, 19, 722-734.


