DOI QR코드

DOI QR Code

Scale Formation by Electrode Reactions in Capacitive Deionization and its Effects on Desalination Performance

축전식 탈염에서 전극반응에 의한 스케일 생성과 탈염성능에 미치는 영향

  • Choi, Jae-Hwan (Dept. of Chemical Engineering, Kongju National University) ;
  • Kang, Hyun-Soo (Dept. of Chemical Engineering, Kongju National University)
  • Received : 2015.12.24
  • Accepted : 2016.01.07
  • Published : 2016.02.10

Abstract

The effects of scale formation of hardness material caused by electrode reactions on the desalination performance of the membrane capacitive deionization (MCDI) were investigated. During the repeated adsorption and desorption process for the influent containing $Ca^{2+}$ ion, changes in effluent concentration and cell potential with respect to the number of adsorption were analyzed. It was found that $OH^-$ generation at the cathode was initiated at about 0.8 V or more of cell potential. In addition, the scale of $Ca(OH)_2$ was formed on the surface of cathode carbon electrode by combining adsorbed $Ca^{2+}$ ions and $OH^-$ ions generated from electrode reaction. As the scale was forming, the electrical resistance of carbon electrode was increasing, which resulted in the decrease of the adsorption amount. In the case of the operation at 1.5 V cell potential, the adsorption was reduced to 58% of the initial adsorption amount due to the scale formation.

막결합 축전식 탈염(MCDI)의 운전과정에서 전극반응에 의한 경도물질의 스케일 생성이 탈염성능에 미치는 영향을 연구하였다. $Ca^{2+}$ 이온을 함유한 유입수에 대해 흡착 및 탈착과정을 반복하면서 사이클에 따른 유출수의 농도와 셀 전위의 변화를 분석하였다. 셀 전위가 약 0.8 V 이상에서 음극에서 수산화이온 생성반응이 시작되는 것을 알 수 있었다. 또한 전극반응으로 생성된 $OH^-$ 이온이 흡착된 $Ca^{2+}$ 이온과 결합하여 음극 탄소전극 표면에서 $Ca(OH)_2$ 스케일이 생성되었다. 스케일이 생성되면서 탄소전극의 전기저항이 증가하여 흡착량은 크게 감소하였다. 셀 전위를 1.5 V에서 운전한 경우 스케일의 영향으로 흡착량은 초기 흡착량의 58%까지 감소하였다.

Keywords

References

  1. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  2. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment-past, present and future, Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  3. M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta, 55, 3845-3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  4. T. J. Welgemoed and C. F. Schutte, Capacitive deionization technology: an alternative desalination solution, Desalination, 183, 327-340 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  5. Y. J. Kim and J. H. Choi, Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71, 70-75 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  6. L. Zou, L. Li, H. Song, and G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Res., 42, 2340-2348 (2008). https://doi.org/10.1016/j.watres.2007.12.022
  7. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  8. P. M. Biesheuvel and A. van der Wal, Membrane capacitive deionization, J. Membr. Sci., 346, 256-262 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  9. G. W. Murphy and D. D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12, 1655-1664 (1967). https://doi.org/10.1016/0013-4686(67)80079-3
  10. M. Andelman, Charge barrier flow-through capacitor, CA Patent 2,444,390 (2002).
  11. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  12. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, and S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol., 45, 10243-10249 (2011). https://doi.org/10.1021/es201551e
  13. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 42, 4923-4928 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  14. C. J. Gabelich, T. D. Tran, and I. H. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010-3019 (2002). https://doi.org/10.1021/es0112745
  15. H. Li, L. Zou, L. Pan, and Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Techol., 75, 8-14 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  16. S. H. Chung, J. K. Lee, J. D. Ocon, Y. I. Son, and J. Y. Lee, Carbon electrodes in capacitive deionization process, Appl. Chem. Eng., 25, 346-351 (2014). https://doi.org/10.14478/ace.2014.1080
  17. J. H. Choi, Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization, Desalination, 347, 224-229 (2014). https://doi.org/10.1016/j.desal.2014.06.004
  18. Y. J. Kim and J. H. Choi, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 44, 990-996 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  19. Y. J. Kim and J. H. Choi, Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane, Appl. Chem. Eng., 21, 87-92 (2010).
  20. R. Zhao, P. M. Biesheuvel, and A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5, 9520-9527 (2012). https://doi.org/10.1039/c2ee21737f
  21. D. C. Harris, Quantitative Chemical Analysis, 5th ed., W.H. Freemann and Company, NY, USA (1998).
  22. B. E. Conway, Electrochemical Supercapacitor: Scientific Fundamentals and Technological Applications, Kluwer Academic/ Plenum Publishers, NY, USA (1999).
  23. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, The Netherland (2004).

Cited by

  1. Short-Circuited Closed-Cycle Operation of Flow-Electrode CDI for Brackish Water Softening vol.52, pp.16, 2016, https://doi.org/10.1021/acs.est.8b02807
  2. New fluorinated polymer- based nanocomposites via combination of sol -gel chemistry and reactive extrusion for polymer electrolyte membranes fuel cells (PEMFCs) vol.252, pp.None, 2016, https://doi.org/10.1016/j.matchemphys.2020.123004
  3. Performance Loss of Activated Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property Predictors vol.54, pp.23, 2016, https://doi.org/10.1021/acs.est.0c06549