DOI QR코드

DOI QR Code

미세조류와 박테리아의 공생 배양을 이용한 하폐수 고도처리

Advanced Treatment of Wastewater Using Symbiotic Co-culture of Microalgae and Bacteria

  • Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • 투고 : 2016.01.05
  • 심사 : 2016.01.12
  • 발행 : 2016.02.10

초록

미세조류와 박테리아의 공배양 시스템은 두 미생물종이 공생적 관계가 있다면 한 배양기에서 BOD와 영양염류의 동시 제거가 가능하다. 이때 영양염류는 미세조류의 바이오매스 성분으로 전환된다. 이 총설은 미세조류와 박테리아의 공생적 혼합배양을 이용한 하폐수처리, 특히 질소와 인의 제거에서의 중요성과 최근의 연구동향을 살펴보았다. 미세조류는 광합성을 통해 산소를 발생시키고 박테리아는 이 산소를 전자수용체로 이용하여 유기물의 산화분해에 활용할 수 있다. 호기성 박테리아가 유기물을 산화할 때 발생되는 $CO_2$는 미세조류의 탄소원으로 섭취되어 탄소동화작용에 사용된다. 미세조류와 박테리아의 공배양은 상호 이익이 될 수도 있고 저해가 될 수도 있으므로 지속적인 영양염류 제거를 위해서는 상호 이익이 되는 공생적 관계가 필수적으로 요구된다. 이를 위해서는 하폐수처리에 사용되는 상용적인 두 미생물 종의 선택이 중요하다.

The co-culture system of microalgae and bacteria enables simultaneous removal of BOD and nutrients in a single reactor if the pair of microorganisms is symbiotic. In this case, nutrients are converted to biomass constituents of microalgae. This review highlights the importance and recent researches using symbiotic co-culture system of microalgae and bacteria in wastewater treatment, focusing on the removal of nitrogen and phosphorus. During wastewater treatment, the microalgae produces molecular oxygen through photosynthesis, which can be used as an electron acceptor by aerobic bacteria to degrade organic pollutants. The released $CO_2$ during the bacterial mineralization can then be consumed by microalgae as a carbon source in photosynthesis. Microalgae and bacteria in the co-culture system could cooperate or compete each other for resources. In the context of wastewater treatment, positive relationships are prerequisite to accomplish the sustainable removal of nutrients. Therefore, the selection of compatible species is very important if the co-culture has to be utilized in wastewater treatment.

키워드

참고문헌

  1. S. Aslan and I. K. Kapdan, Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae, Ecol. Eng., 28, 64-70 (2006). https://doi.org/10.1016/j.ecoleng.2006.04.003
  2. G. Singh and P. B. Thomas, Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor, Bioresour. Technol., 117, 80-85 (2012). https://doi.org/10.1016/j.biortech.2012.03.125
  3. Y. Z. Peng, X. L. Wang, and B. K. Li, Anoxic biological phosphorus uptake and the effect of excessive aeration on biological phosphorus removal in the $A^2O$ process, Desalination, 189, 155-164 (2006). https://doi.org/10.1016/j.desal.2005.06.023
  4. F. Clarens, E. P. Resurreccion, M. A. White, and L. M. Colosi, Environmental life cycle comparison of algae to other bioenergy feedstocks, Environ. Sci. Technol., 44, 1813-1819 (2010). https://doi.org/10.1021/es902838n
  5. Z. Guo and Y. W. Tong, The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions, J. Appl. Phycol., 26, 1483-1492 (2013).
  6. T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sustain. Energy Rev., 19, 360-369 (2013). https://doi.org/10.1016/j.rser.2012.11.030
  7. P. J. He, B. Mao, F. Lu, L. M. Shao, D. J. Lee, and J. S. Chang, The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters, Bioresour. Technol., 146, 562-568 (2013). https://doi.org/10.1016/j.biortech.2013.07.111
  8. R. Marin, L. G. M. Espinosa, and T. Stephenson, Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater, Bioresour. Technol., 101, 58-64 (2010). https://doi.org/10.1016/j.biortech.2009.02.076
  9. R. Munoz and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40, 2799-2815 (2006). https://doi.org/10.1016/j.watres.2006.06.011
  10. F. Gonzalez, B. M. Salces, and M. C. G. Gonzalez, Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry, Bioresour. Technol., 102, 960-966 (2011). https://doi.org/10.1016/j.biortech.2010.09.052
  11. Z. Liang, Y. Liu, F. Ge, Y. Xu, N. Tao, F. Peng, and M. Wong, Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis, Chemosphere, 92, 1383-1389 (2013). https://doi.org/10.1016/j.chemosphere.2013.05.014
  12. L. E. Gonzalez and Y. Bashan, Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense, Appl. Environ. Microbiol., 66, 1527-1531 (2000). https://doi.org/10.1128/AEM.66.4.1527-1531.2000
  13. L. E. de-Bashan, H. Antoun, and Y. Bashan, Cultivation factors and population size control the uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense, FEMS Microbiol. Ecol., 54, 197-203 (2005). https://doi.org/10.1016/j.femsec.2005.03.014
  14. Vasseur, G. Bougaran, M. Garnier, J. Hamelin, C. Leboulanger, M. L. Chevanton, B. Mostajir, B. Sialve, J. P. Steyer, and E. Fouilland, Carbon conversion efficiency and population dynamics of a marine algae-bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion, Bioresour. Technol., 119, 79-87 (2012). https://doi.org/10.1016/j.biortech.2012.05.128
  15. B. E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnol. Bioeng., 100, 203-212 (2008). https://doi.org/10.1002/bit.21875
  16. V. V. Unnithan, A. Unc, and G. B. Smith, Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters, Algal. Res., 4, 35-40 (2014). https://doi.org/10.1016/j.algal.2013.11.009
  17. Y. Park, K.-W. Je, K. Lee, S.-E. Jung, and T.-J. Choi, Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga, Hydrobiologia, 598, 219-228 (2007).
  18. S. R. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, and R. Naidu, Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential, Biotechnol. Adv., 29, 896-907 (2011). https://doi.org/10.1016/j.biotechadv.2011.07.009
  19. G. Y. Rhee, Competition between an alga and an aquatic bacterium for phosphate. Limnol. Oceanogr., 17, 505-514 (1972). https://doi.org/10.4319/lo.1972.17.4.0505
  20. Q. Liang, W. Renjun, Z. Peng, C. Ruinan, Z. Wenli, T. Liuqing, and T. Xuexi, Interaction between Chlorella vulgaris and bacteria: interference and resource competition, Acta Oceanol. Sin., 33, 135-140 (2014). https://doi.org/10.1007/s13131-014-0432-7
  21. R. Delucca and M. D. McCracken, Observations on interactions between naturally-collected bacteria and several species of algae, Hydrobiologia, 55, 71-75 (1977). https://doi.org/10.1007/BF00034807
  22. J. Liu, A. J. Lewitus, J. W. Kempton, and S. B. Wilde, The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae, 7, 184-193 (2008). https://doi.org/10.1016/j.hal.2007.07.001
  23. L. A. Krometis, G. W. Characklis, P. N. Drummey, and M. D. Sobsey, Comparison of the presence and partitioning behavior of indicator organisms and Salmonella spp. In an urban watershed, J. Water Health, 08, 44-59 (2010). https://doi.org/10.2166/wh.2009.032
  24. J. Lee, D. H. Cho, R. Ramanan, B. H. Kim, H.-M. Oh, and H. S. Kim, Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris, Bioresour. Technol., 131, 195-201 (2013). https://doi.org/10.1016/j.biortech.2012.11.130
  25. G. Schumacher, T. Blume, and I. Sekoulov, Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm, Water Sci. Technol., 47, 195-202 (2003). https://doi.org/10.2166/wst.2003.0605
  26. F. Ribalet, L. Intertaglia, P. Lebaron, and R. Casotti, Differential effect of three polyunsaturated aldehydes on marine bacterial isolates, Aquat. Toxicol., 86, 249-255 (2008). https://doi.org/10.1016/j.aquatox.2007.11.005
  27. M. DellaGreca, A. Zarrelli, P. Fergola, M. Cerasuolo, A. Pollio, and G. Pinto, Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol., 36, 339-349 (2010). https://doi.org/10.1007/s10886-010-9753-y
  28. K. Fukami, T. Nishijima, and Y. Ishida, Stimulative and inhibitory effects of bacteria on the growth of microalgae, Hydrobiologia, 358, 185-191 (1997). https://doi.org/10.1023/A:1003139402315
  29. J. J. Cole, Interactions between Bacteria and Algae in Aquatic Ecosystems, Ann. Rev. Ecol. Syst., 13, 291-314 (1982). https://doi.org/10.1146/annurev.es.13.110182.001451
  30. P. Fergola, M. Cerasuolo, A. Pollio, G. Pinto, and M. DellaGreca, Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model, Ecol. Modell., 208, 205-214 (2007). https://doi.org/10.1016/j.ecolmodel.2007.05.024
  31. M. Danger, C. Oumarou, D. Benest, and G. Lacroix, Bacteria can control stoichiometry and nutrient limitation of phytoplankton, Funct. Ecol., 21, 202-210 (2007). https://doi.org/10.1111/j.1365-2435.2006.01222.x
  32. V. Lebsky, L. E. Gonzalez-Bashan, and Y. Bashan, Ultrastructure of interaction in alginate beads between the microalga Chlorella vulgaris with its natural associative bacterium Phyllobacterium myrsinacearum and with the plant growth-promoting bacterium Azospirillum brasilense, Can. J. Microbiol., 47, 1-8 (2001). https://doi.org/10.1139/w00-115
  33. X. Ma, W. Zhou, Z. Fu, Y. Cheng, M. Min, Y. Liu, Y. Zhang, P. Chen, and R. Ruan, Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system, Bioresour. Technol., 167, 8-13 (2014). https://doi.org/10.1016/j.biortech.2014.05.087
  34. M. N. Byappanahalli, R. Sawdey, S. Ishii, D. A. Shively, J. A. Ferguson, R. L. Whitman, and M. J. Sadowsky, Seasonal stability of cladophora-associated Salmonella in lake Michigan watersheds, Water Res., 43, 806-814 (2009). https://doi.org/10.1016/j.watres.2008.11.012
  35. M. T. Croft, A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith, Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, 438, 90-93 (2005). https://doi.org/10.1038/nature04056
  36. C. Bouteleux, S. Saby, D. Tozza, J. Cavard, V. Lahoussine, P. Hartemann, and L. Mathieu, Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals, Appl. Environ. Microbiol., 71, 734-740 (2005). https://doi.org/10.1128/AEM.71.2.734-740.2005
  37. G. M. Wolfaardt, J. R. Lawrence, R. D. Robarts, and D. E. Caldwell, The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium, Can. J. Microbiol., 40, 331-340 (1994). https://doi.org/10.1139/m94-055
  38. H. Mazur, A. Konop, and R. Synak, Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol., 13, 35-42 (2001). https://doi.org/10.1023/A:1008199409953
  39. J.-L. Mouget, A. Dakhama, M. C. Lavoie, and J. Noue, Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved? FEMS Microbiol. Ecol., 18, 35-43 (1995). https://doi.org/10.1016/0168-6496(95)00038-C
  40. Y. Zhang, H. Su, Y. Zhong, C. Zhang, Z. Shen, W. Sang, G. Yan, and X. Zhou, The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products, Water Res., 46, 5509-5516 (2012). https://doi.org/10.1016/j.watres.2012.07.025
  41. J. N. Rooney-Verga, M. W. Giewat, M. C. Savin, S. Sood, M. LeGresley, and J. L. Martin, Links between phytoplankton and bacterial community dynamics in a coastal marine environment, Microbiol. Ecol., 49, 163-175 (2005). https://doi.org/10.1007/s00248-003-1057-0
  42. J.-P. Hernandez, L. E. de-Bashan, D. J. Rodriguez, Y. Rodriguez, and Y. Bashan, Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils, Eur. J. Soil Biol., 45, 88-93 (2009). https://doi.org/10.1016/j.ejsobi.2008.08.004
  43. L. E. de-Bashan, M. Moreno, J. P. Hernandez, and Y. Bashan, Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense, Water Res., 36, 2941-2948 (2002). https://doi.org/10.1016/S0043-1354(01)00522-X
  44. C. E. Riquelme, Interaction between Microalgae and Bacteria in Coastal Seawater. PhD Dissertation, Kyoto University, Japan (1988).
  45. J. Du, S. Cheng, C. Shao, Y. Lv, G. Pu, X. Ma, Y. Jia, and X. Tian, Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China), Aquat. Ecol., 47, 303-313 (2013). https://doi.org/10.1007/s10452-013-9445-0
  46. I. Suminto and K. Hirayama, Effects of bacterial coexistence on the growth of a marine diatom Chaetoceros gracilis. Fish. Sci., 62, 40-43 (1996). https://doi.org/10.2331/suisan.62.40
  47. L. E. de-Bashan and Y. Bashan, Immobilized microalgae for removing pollutants: Review of practical aspects, Bioresour. Technol., 101, 1611-1627 (2010). https://doi.org/10.1016/j.biortech.2009.09.043
  48. R. M. M. Abed, Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons, Int. Biodeterior. Biodegradation, 64, 58-64 (2010). https://doi.org/10.1016/j.ibiod.2009.10.008
  49. F. G. Acien, C. V. Gonzalez, J. M. Fernandez, M. G. Gonzalez, J. Moreno, E. Sierra, M. G. Guerrero, and E. Molina, Removal of $CO_2$ from flue gases coupled to the photosynthetic generation of organic matter by cyanobacteria, Nat. Biotechnol., 25, S265 (2009).
  50. R. Munoz, M. Jacinto, B. Guieysse, and B. Mattiasson, Combined carbon and nitrogen removal from acetonitrile using algal-bacterial bioreactors. Appl. Microbiol. Biotechnol., 67, 699-707 (2005). https://doi.org/10.1007/s00253-004-1811-3
  51. G. Tchobanoglous, F. L. Burton, and H. D. Stensel, Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York, NY (2003).
  52. I. de Godos, V. A. Vargas, S. Blanco, M. C. Gonzalez, R. Soto, P. A.-E Garcia, E. Becares, and R. Munoz, A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation, Bioresour. Technol., 101, 5150-5158 (2010). https://doi.org/10.1016/j.biortech.2010.02.010
  53. R. O. Canizares-Villanueva, Heavy metals biosorption by using microbial biomass, Rev. Latinoam. Microbiol., 42, 131-143 (2000).
  54. W. Mulbry, E. K. Westhead, C. Pizarro, and L. Sikora, Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer, Bioresour. Technol., 96, 451-458 (2005). https://doi.org/10.1016/j.biortech.2004.05.026
  55. M. Medina and U. Neis, Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance, Water Sci. Technol., 55, 165-171 (2007).
  56. M. A. Aziz and W. J. Ng, Industrial wastewater treatment using an activated algae-reactor, Water Sci. Technol., 28, 71-76 (1993). https://doi.org/10.2166/wst.1993.0144
  57. C. J. Ogbonnna, H. Yoshizawa1, and H. Tanaka, Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms, J. Appl. Phycol., 12, 277-284 (2000). https://doi.org/10.1023/A:1008188311681
  58. C. S. Lee, S.-A. Lee, S.-R. Ko, H.-M. Oh, and C.-Y. Ahn, Effects of photoperiod on nutrient removal, biomass production, and algal- bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater, Water Res., 68, 680-691 (2015). https://doi.org/10.1016/j.watres.2014.10.029
  59. X. Zhao, Y. Zhou, S. Huang, D. Qiu, L. Schideman, X. Chai, and Y. Zhao, Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production, Bioresour. Technol., 156, 322-328 (2014). https://doi.org/10.1016/j.biortech.2013.12.112
  60. C. Gonzalez, J. Marciniak, S. Villaverde, C. Leon, P. A. Garcia, and R. Munoz, Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia, Water Sci. Technol., 58, 95-102 (2008). https://doi.org/10.2166/wst.2008.655
  61. H.-Y. Ren, B.-F. Liu, F. Kong, L. Zhao, and N. Ren, Hydrogen and lipid production from starch wastewater by co-culture of anaerobic sludge and oleaginous microalgae with simultaneous COD, nitrogen and phosphorus removal, Water Res., 85, 404-412 (2015). https://doi.org/10.1016/j.watres.2015.08.057
  62. G. Mujtaba, M. Rizwan, and K. Lee, Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida, Biotechnol. Bioprocess Eng., 20(6), 1114-1122 (2015). https://doi.org/10.1007/s12257-015-0421-5
  63. H. Kawai, V. M. Grieco, and P. Jureidini, A study of the treatability of pollutants in high rate photosynthetic ponds and the utilization of the proteic potential of algae which proliferate in the ponds, Environ. Technol. Lett., 5, 505-515 (1984). https://doi.org/10.1080/09593338409384305
  64. N. Mallick and L. C. Rai, Removal of inorganic ions from wastewaters by immobilized microalgae, World J. Microbiol. Biotechnol., 10, 439-443 (1994). https://doi.org/10.1007/BF00144469
  65. E. Zhang, B. Wang, Q. Wang, S. Zhang, and B. Zhao, Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment, Bioresour. Technol., 99, 3787-3793 (2008). https://doi.org/10.1016/j.biortech.2007.07.011
  66. K. Liu, J. Li, H. Qiao, A. Lin, and G. Wang, Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour. Technol., 114, 26-32 (2012). https://doi.org/10.1016/j.biortech.2012.02.003
  67. E. Posadas, P. A. G. Encina, A. Soltau, A. Dominguez, I. Diaz, and R. Munoz, Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors, Bioresour. Technol., 139, 50-58 (2013). https://doi.org/10.1016/j.biortech.2013.04.008
  68. N. C. Boelee, H. Temmink, M. Janssen, C. J. N. Buisman, and R. H. Wijffels, Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms, Water Res., 45, 5925-5933 (2011). https://doi.org/10.1016/j.watres.2011.08.044
  69. F. Lananan, S. H. A. Hamid, W. N. S. Din, N. Ali, H. Khatoon, A. Jusoh, and A. Endut, Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.), Int. Biodeter. Biodegradation, 95, 127-134 (2014). https://doi.org/10.1016/j.ibiod.2014.06.013
  70. D. Hernandez, B. Riano, M. Coca, and M. C. G. Gonzalez, Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass, Bioresour. Technol., 135, 598-603 (2013). https://doi.org/10.1016/j.biortech.2012.09.029

피인용 문헌

  1. Optimization of Alkail Extraction for Production of Protein Concentrates from Lipid Extracted Algae vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.286
  2. Utilization of Organic Liquid Fertilizer in Microalgae Cultivation for Biodiesel Production vol.23, pp.4, 2018, https://doi.org/10.1007/s12257-018-0081-3
  3. Symbiotic Co-Culture of Scenedesmus sp. and Azospirillum brasilense on N-Deficient Media with Biomass Production for Biofuels vol.11, pp.3, 2019, https://doi.org/10.3390/su11030707
  4. Effects of Multiple Stress Factors Including Iron Supply on Cell Growth and Lipid Accumulation in Marine Microalga Dunaliella tertiolecta vol.28, pp.3, 2017, https://doi.org/10.14478/ace.2017.1018
  5. 미세조류를 이용한 오·폐수 영양염류 제거효율 평가 vol.50, pp.2, 2016, https://doi.org/10.11614/ksl.2017.50.2.187
  6. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-51315-5
  7. Chlorella vulgaris and Its Phycosphere in Wastewater: Microalgae-Bacteria Interactions During Nutrient Removal vol.8, pp.None, 2016, https://doi.org/10.3389/fbioe.2020.557572
  8. Removal of Nutrients from Fertilizer Plant Wastewater Using Scenedesmus sp.: Formation of Bioflocculation and Enhancement of Removal Efficiency vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/8094272
  9. Removing of fat residues from domestic kitchen wastewater by synthetic filter of saw dust vol.779, pp.1, 2016, https://doi.org/10.1088/1755-1315/779/1/012095
  10. Batch cultivation of microalgae in anaerobic digestate exhibits functional changes in bacterial communities impacting nitrogen removal and wastewater treatment vol.57, pp.None, 2016, https://doi.org/10.1016/j.algal.2021.102338
  11. Microalgal-Bacterial Synergistic Interactions and Their Potential Influence in Wastewater Treatment: a Review vol.14, pp.3, 2016, https://doi.org/10.1007/s12155-020-10213-9