Acknowledgement
Supported by : NRF
References
- ACI 207.2R-07 (2007), Report on Thermal and Volume Change Effects on Cracking of Mass Concrete, ACI Committee 207, Detroit, Mich.
- ACI 209R-92 (2008), Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures, ACI Committee 209, Detroit, Mich.
- Amin, M.N., Kim, J.S., Lee, Y. and Kim, J.K. (2009), "Simulation of the thermal stress in mass concrete using a thermal stress measuring device", Cement Concrete Res., 39(3), 154-164. https://doi.org/10.1016/j.cemconres.2008.12.008
- Bazant, Z.P., Baweja, S., Acker, P., Carol, I., Catarino, J., Chern, J.C., Heut, C., Wittmann, F.H. and Carreira, D. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures - Model B-3", Mater. Struct., 28, 357-365. https://doi.org/10.1007/BF02473152
- Bazant, Z.P. and Carol, I. (1993), "Creep and shrinkage of concrete", Proceedings of the 5th International RILEM Symposium, Barcelona, September.
- Breitenbucher, R. (1990), "Investigation of thermal cracking with the cracking-frame", Mater. Struct., 23(3), 172-177. https://doi.org/10.1007/BF02473015
- Chu, I., Lee, Y., Amin, M.N., Jang, B.S. and Kim, J.K. (2013), "Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure", Constr. Build. Mater., 45, 192-198. https://doi.org/10.1016/j.conbuildmat.2013.03.056
- De Schutter, G. (2002), "Fundamental study of early age concrete behaviour as a basis for durable concrete structures", Mater. Struct., 35(1), 15-21. https://doi.org/10.1007/BF02482085
- Deborst, R. and Vandenboogaard, A.H. (1994), "Finite-element modeling of deformation and cracking in early-age concrete", J. Eng. Mech., 120(12), 2519-2534. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2519)
- ElSafty, A. and Abdel-Mohti, A. (2013), "Investigation of likelihood of cracking in reinforced concrete bridge decks", Int. J. Concrete Struct. Mater., 7(1), 79-93. https://doi.org/10.1007/s40069-013-0034-3
- Ghali, A., Favre, R. and Elbadry, M. (2002), Concrete Structures: Stresses and Deformations, Spon Press, New York, NY, USA.
- Kim, J.H.J., Jeon, S.E. and Kim, J.K. (2002), "Development of new device for measuring thermal stresses", Cem. Concrete Res., 32(10), 1645-1651. https://doi.org/10.1016/S0008-8846(02)00842-6
- Klemczak, B. and Knoppik-Wrobel, A. (2014), "Analysis of early-age thermal and shrinkage stresses in reinforced concrete walls", ACI Struct. J., 111(2), 313-322.
- Lee, Y. and Kim, J.K. (2009), "Numerical analysis of the early age behavior of concrete structures with a hydration based microplane model", Comput. Struct., 87(17), 1085-1101. https://doi.org/10.1016/j.compstruc.2009.05.008
- Murthy, A.R., Iyer, N.R. and Prasad, B.K.R. (2013), "Evaluation of mechanical properties for high strength and ultrahigh strength concretes", Adv. Concrete Constr., 1(4), 341-358. https://doi.org/10.12989/acc2013.1.4.341
- Ren, W., Sneed, L.H., Yang, Y. and He, R. (2014), "Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model", Int. J. Concrete Struct. Mater., 9(1), 45-54.
- Zhu, B. (2014), Thermal Stresses and Temperature Control of Mass Concrete, Elsevier, Boston, MA, USA.
Cited by
- Thermal stress analysis of silo in radioactive waste repository considering construction conditions vol.322, 2017, https://doi.org/10.1016/j.nucengdes.2017.07.017
- Temperature development and cracking characteristics of high strength concrete slab at early age vol.74, pp.6, 2020, https://doi.org/10.12989/sem.2020.74.6.747
- Study on the performance of concrete-filled steel tube beam-column joints of new types vol.26, pp.6, 2020, https://doi.org/10.12989/cac.2020.26.6.547