References
- ANSI/AISC 341-05 (2005), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc., Chicago, IL, USA.
- ANSI/AISC 360-05 (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Inc., Chicago, IL, USA.
- ASCE 7-05 (2006), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers (ASCE), Reston, VA, USA.
- ASCE/SEI 41-13 (2014), Seismic Rehabilitation of Existing Buildings, (1st Edition), American Society of Civil Engineers.
- Baik, S.W., Lee, D.G. and Krawinkler, H. (1988), "A simplified model for seismic response prediction of steel frame structures", Proceedings of the 9th World Conference on Earthquake Engineering, Volume 5, Tokyo-Kyoto, Japan, August.
- Beck, J.L., Chan, E., Irfanoglu, A. and Papadimitriou, C. (1999), "Multi-criteria optimal structural design under uncertainty", Earthq. Eng. Struct. Dyn., 28(7), 741-761. https://doi.org/10.1002/(SICI)1096-9845(199907)28:7<741::AID-EQE840>3.0.CO;2-6
- Bertero, V.V., Anderson, J.C., Krawinkler, H. and Miranda, E. (1991), Design guidelines for ductility and drift limits; Report No. UCB/EERC-91/15, University of California, Earthquake Eng Center, Berkeley, CA, USA.
- Broderick, B.M., Elghazouli, A.Y. and Goggins, J. (2008), "Earthquake testing and response analysis of concentrically-braced sub-frames", J. Construct. Steel Res., 64(9), 997-1007. https://doi.org/10.1016/j.jcsr.2007.12.014
- Chopra, A.K. (2012), Dynamics of Structures, (4th ed.), Prentice Hall Inc., London, UK.
- Dicleli, M. and Calik, E.E. (2008), "Physical theory hysteretic model for steel braces", J. Struct. Eng. ASCE, 134 (7), 1215-1228. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1215)
- DIN 1025 (1995), Hot rolled I and H sections: Dimensions, mass and static parameters, DIN Deutsches Institut Fur Normung EV, Berlin, Germany.
- Fu, G. and Frangopol, D.M. (1990), "Reliability-based vector optimization of structural systems", J. Struct. Eng. ASCE, 116(8), 2141-61.
- Hajirasouliha, I. and Doostan, A. (2010), "A simplified model for seismic response prediction of concentrically braced frames", Adv. Eng. Software, 41(3), 497-505. https://doi.org/10.1016/j.advengsoft.2009.10.008
- Hajirasouliha, I. and Moghaddam, H. (2009), "New lateral force distribution for seismic design of structures", J. Struct. Eng. ASCE, 135(8), 906-915. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:8(906)
- Hajirasouliha, I. and Pilakoutas, K. (2012), "General Seismic Load Distribution for Optimum Performance-Based Design of Shear-Buildings", J. Earthq. Eng., 16(4), 443-462. https://doi.org/10.1080/13632469.2012.654897
- Hajirasouliha, I., Asadi, P. and Pilakoutas, K. (2012), "An efficient performance-based seismic design method for reinforced concrete frames", Earthq. Eng. Struct. Dyn., 41(4), 663-679. https://doi.org/10.1002/eqe.1150
- Hart, G.C. (2000), "Earthquake forces for the lateral force code", Struct. Des. Tall Build., 9(1), 49-64. https://doi.org/10.1002/(SICI)1099-1794(200003)9:1<49::AID-TAL130>3.0.CO;2-X
- Haukaas, T. and Kiureghian, A.D. (2003), Finite element reliability and sensitivity methods for performancebased engineering, Report No. PEER 2003/14, Pacific Earthquake Eng Research Center, University of California, Berkeley, CA, USA.
- Hsiao, P.C., Lehman, D.E., Berman, J.W., Roeder, C.W. and Powel, J. (2014), "Seismic vulnerability of older braced frames", J. Perform. Construct. Facil. ASCE, 28(1), 108-120. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000394
- IBC (2012), International Building Code, International Code Council, Country Club Hills, USA.
- Jain, A.K., Goel, S.C. and Hanson, R.D. (1980), "Hysteretic cycles of axially loaded steel members", J. Struct. Div. ASCE, 106(8), 1777-1795.
- Jazany, R.A., Hajirasouliha, I. and Farshchi, H. (2013), "Influence of masonry infill on the seismic performance of concentrically braced frames", J. Construct. Steel Res., 88, 150-163. https://doi.org/10.1016/j.jcsr.2013.05.009
- Karami Mohammad, R. and Sharghi, H. (2014), "On the optimum performance-based design of eccentrically braced frames", Steel Compos. Struct., Int. J., 16(4), 357-374. https://doi.org/10.12989/scs.2014.16.4.357
- Karami Mohammadi, R., El Naggar, M.H. and Moghaddam, H. (2004), "Optimum strength distribution for seismic resistant shear buildings", Int. J. Solid. Struct., 41(22-23), 6597-6612. https://doi.org/10.1016/j.ijsolstr.2004.05.012
- Kazantzi, A.K., Vamvatsikos, D. and Lignos, D.G. (2014), "Seismic performance of a steel momentresisting frame subject to strength and ductility uncertainty", Eng. Struct., 78, 69-77. https://doi.org/10.1016/j.engstruct.2014.06.044
- Koboevic, S.M., Rozon, J. and Tremblay, R. (2012), "Seismic performance of low-to-moderate height eccentrically braced steel frames designed for North American seismic conditions", J. Struct. Eng. ASCE, 138(12), 1465-1476. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000433
- Krawinkler, H. and Zohrei, M. (1984), "Cumulative damage in steel structures subjected to earthquake ground motions", Comput. Struct., 16(1-4), 531-41. https://doi.org/10.1016/0045-7949(83)90193-1
- Kwon, O.S. and Elnashai, A. (2006), "The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure", Eng. Struct., 28(2), 289-303. https://doi.org/10.1016/j.engstruct.2005.07.010
- Lagaros, N.D., Garavelas, A.T. and Papadrakakis, M. (2008), "Innovative seismic design optimization with reliability constraints", Comput. Method. Appl. Mech. Engrg., 198(1), 28-41. https://doi.org/10.1016/j.cma.2007.12.025
- Lee, K. and Foutch, D.A. (2002), "Performance evaluation of new steel frame buildings for seismic loads", Earthq. Eng. Struct. Dyn., 31(3), 653-670. https://doi.org/10.1002/eqe.147
- Liu, M., Burns, S.A. and Wen, Y.K. (2005), "Multiobjective optimization for performance-based seismic design of steel moment frame structures", Earthq. Eng. Struct. Dyn., 34(3), 289-306. https://doi.org/10.1002/eqe.426
- McCrum, D.P. and Broderick, B.M. (2013), "An experimental and numerical investigation into the seismic performance of a multi-storey concentrically braced plan irregular structure", Bull. Earthq. Eng., 11(6), 2363-2385. https://doi.org/10.1007/s10518-013-9470-3
- Moghaddam, H. and Hajirasouliha, I. (2006), "Toward more rational criteria for determination of design earthquake forces", Int. J. Solid. Struct., 43(9), 2631-2645. https://doi.org/10.1016/j.ijsolstr.2005.07.038
- Moghaddam, H. and Hajirasouliha, I. (2008), "Optimum strength distribution for seismic design of tall buildings", Struct. Des. Tall Special Build., 17(2), 331-349. https://doi.org/10.1002/tal.356
- Moghaddam, H., Hajirasouliha, I. and Doostan, A. (2005), "Optimum seismic design of concentrically steel braced frames: Concepts and design procedures", J. Construct. Steel Res., 61(2), 151-166. https://doi.org/10.1016/j.jcsr.2004.08.002
- Papadrakakis, M., Lagaros, N.D. and Plevris, V. (2005), "Design optimization of steel structures considering uncertainties", Eng. Struct., 27(9), 1408-1418. https://doi.org/10.1016/j.engstruct.2005.04.002
- Prakash, V., Powell, G.H., and Filippou, F.C. (1992), DRAIN-2DX: Base program user guide; UCB/ SEMM-92/29, Earthquake Engineering Research Centre, University of California, Berkeley, CA, USA.
- Priestley, M.J.N., Calvi, M.C. and Kowalsky, M.J. (2007), Displacement-based Seismic Design of Structures, IUSS Press, Pavia, Italy.
- Simoes da Silva, L., Rebelo, C., Nethercot, D., Marques, L., Simoes, R. and Vila Real P.M.M. (2009), "Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams, Part 2: Variability of steel properties", J. Construct. Steel Res., 65(4), 832-849. https://doi.org/10.1016/j.jcsr.2008.07.017
- Vanmarke, E.H., Fenton, G.A. and Heredia-Zavoni, E. (1999), SIMQKE-II, Conditioned earthquake ground motion simulator: User's manual; Version 2.1, Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, CA, USA.
- Yousuf, M. and Bagchi, A. (2009), "Seismic design and performance evaluation of steel-frame buildings designed using the 2005 National Building code of Canada", Can. J. Civil Eng., 36(2), 280-294. https://doi.org/10.1139/L08-122
- Zacharenaki, A., Fragiadakis, M. and Papadrakakis, M. (2013), "Reliability-based optimum seismic design of structures using simplified performance estimation methods", Eng. Struct., 52(1), 707-717. https://doi.org/10.1016/j.engstruct.2013.03.007
Cited by
- More adequate seismic design force pattern for yielding structures considering structural and ground motion uncertainties effects vol.27, pp.16, 2018, https://doi.org/10.1002/tal.1537
- Modeling and Seismic Response Analysis of Italian Code-Conforming Single-Storey Steel Buildings pp.1559-808X, 2018, https://doi.org/10.1080/13632469.2018.1528913
- Modelling Uncertainties of Italian Code-Conforming Structures for the Purpose of Seismic Response Analysis pp.1559-808X, 2018, https://doi.org/10.1080/13632469.2018.1527262
- More efficient lateral load patterns for seismic design of steel moment-resisting frames vol.171, pp.6, 2018, https://doi.org/10.1680/jstbu.17.00064
- Performance based design optimum of CBFs using bee colony algorithm vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.613
- Estimation of seismic response parameters and capacity of irregular tunnel-form buildings vol.17, pp.9, 2016, https://doi.org/10.1007/s10518-019-00679-0
- Earthquake-resistant buildings with steel or composite columns: Comparative assessment using structural optimization vol.27, pp.None, 2020, https://doi.org/10.1016/j.jobe.2019.100988
- Seismic reliability analysis of steel moment-resisting frames retrofitted by vertical link elements using combined series-parallel system approach vol.19, pp.2, 2016, https://doi.org/10.1007/s10518-020-01013-9