DOI QR코드

DOI QR Code

A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation

  • Bounouara, Fatima (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Belkorissat, Ismahene (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
  • 투고 : 2015.03.19
  • 심사 : 2015.09.17
  • 발행 : 2016.02.10

초록

The objective of this work is to present a zeroth-order shear deformation theory for free vibration analysis of functionally graded (FG) nanoscale plates resting on elastic foundation. The model takes into consideration the influences of small scale and the parabolic variation of the transverse shear strains across the thickness of the nanoscale plate and thus, it avoids the employ use of shear correction factors. Also, in this present theory, the effect of transverse shear deformation is included in the axial displacements by using the shear forces instead of rotational displacements as in available high order plate theories. The material properties are supposed to be graded only in the thickness direction and the effective properties for the FG nanoscale plate are calculated by considering Mori-Tanaka homogenization scheme. The equations of motion are obtained using the nonlocal differential constitutive expressions of Eringen in conjunction with the zeroth-order shear deformation theory via Hamilton's principle. Numerical results for vibration of FG nanoscale plates resting on elastic foundations are presented and compared with the existing solutions. The influences of small scale, shear deformation, gradient index, Winkler modulus parameter and Pasternak shear modulus parameter on the vibration responses of the FG nanoscale plates are investigated.

키워드

과제정보

연구 과제 주관 기관 : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)

참고문헌

  1. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2
  2. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
  3. Aissani, K., Bachir Bouiadjra, M., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-762. https://doi.org/10.12989/sem.2015.55.4.743
  4. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  5. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 19(2), 369-384.
  6. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  7. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  8. Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  9. Ansari, R., Ashrafi, M.A., Pourashraf, T. and Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronautica, 109, 42-51. https://doi.org/10.1016/j.actaastro.2014.12.015
  10. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  11. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  12. Benachour, A., Daouadji, H.T., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Composites Part B, 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  13. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Composites Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  14. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  15. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41(22), 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  16. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  17. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  18. Bouchafa, A., Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  19. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  20. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  21. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  22. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Method., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  23. Bunch, J., van der Zande, A.M. and Verbridge, S.S. (2007), "Electromechanical resonators from grapheme sheets", Science, 315(5811), 490-493. https://doi.org/10.1126/science.1136836
  24. Cheng, Z.-Q. and Batra, R.C. (2000), "Three-dimensional thermoelastic deformations of a functionally graded elliptic plate", Composites: Part B, 31(2), 97-106.
  25. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  26. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., Int. J., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  27. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53(4), 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  28. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  29. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  30. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. https://doi.org/10.1007/s11012-013-9827-3
  31. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  32. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  33. Hashemi, S.H. and Samaei, A.T. (2011), "Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory", Physica E: Low-dimension. Syst. Nanostruct., 43(7), 1400-1404. https://doi.org/10.1016/j.physe.2011.03.012
  34. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. (ASCE), 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  35. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  36. Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale Effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19(18), 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  37. Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022
  38. Jung, W.-Y. and Han, S.-C. (2013), "Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory", Math. Probl. Eng. DOI: http://dx.doi.org/10.1155/2013/476131
  39. Katsnelson, M.I. and Novoselov, K.S. (2007), "Graphene: New bridge between condensed matter physics and quantum electrodynamics", Solid State Commun., 143(1-2), 3-13. https://doi.org/10.1016/j.ssc.2007.02.043
  40. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Computat. Method., 11(5), 135007.
  41. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  42. Lee, Z., Ophus, C., Fischer, L., Nelson-Fitzpatrick, N., Westra, K., Evoy, S., Radmilovic, V., Dahmen, U. and Mitlin, D. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnology, 17(12), 3063. https://doi.org/10.1088/0957-4484/17/12/042
  43. Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
  44. Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M. and Reddy, J.N. (2008), "Non-local elastic plate theories", Proceedings of the Royal Society A., 463(2088), 3225-3240.
  45. Lu, C., Wu, D. and Chen, W. (2011), "Nonlinear responses of nanoscale FGM films including the effects of surface energies", IEEE Transactions on Nanotechnology, 10, 1321-1327. https://doi.org/10.1109/TNANO.2011.2139223
  46. Lun, F., Zhang, P., Gao, F. and Jia, H. (2006), "Design and fabrication of micro-optomechanical vibration sensor", Microfabrication Technology, 120(1), 61-64.
  47. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  48. Moser, Y. and Gijs, M.A. (2007), "Miniaturized flexible temperature sensor", J. Microelectromech. Syst., 16(6), 1349-1354. https://doi.org/10.1109/JMEMS.2007.908437
  49. Nami, M.R. and Janghorban, M. (2013), "Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory", Beilstein J. Nanotech., 4(1), 968-973. https://doi.org/10.3762/bjnano.4.109
  50. Natarajan, S., Baiz, P., Ganapathi, M., Kerfriden, P. and Bordas, S. (2011), "Linear free flexural vibration of cracked functionally graded plates in thermal environment", Comput. Struct., 89(15-16), 1535-1546. https://doi.org/10.1016/j.compstruc.2011.04.002
  51. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Computat. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
  52. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory" Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  53. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713
  54. Phan-Dao, H., Nguyen-Xuan, H., Thai-Hoang, C., Nguyen-Thoi, T. and Rabczuk, T. (2013), "An edgebased smoothed finite element method for analysis of laminated composite plates", Int. J. Computat. Method., 10(1), 1340005. https://doi.org/10.1142/S0219876213400057
  55. Pradhan, S.C. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188. https://doi.org/10.1016/j.physleta.2009.09.021
  56. Pradhan, S.C. and Kumar, A. (2010), "Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method", Comput. Mater. Sci., 50(1), 239-245. https://doi.org/10.1016/j.commatsci.2010.08.009
  57. Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A, 373(11), 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030
  58. Qian, L., Batra, R. and Chen, L. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004
  59. Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", Proceedings of the 3rd International Conference on Micro-and Nanosystems, San Diego, CA, USA, August-September.
  60. Ray, M.C. (2003), "Zeroth-order shear deformation theory for laminated composite plates", J. Appl. Mech., 70(3), 374-380. https://doi.org/10.1115/1.1558077
  61. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  62. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  63. Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer grapheme sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38(7), 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003
  64. Samaei, A.T., Aliha, M.R.M. and Mirsayar, M.M. (2015), "Frequency analysis of a graphene sheet embedded in an elastic medium with consideration of small scale", Mater. Phys. Mech., 22, 125-135.
  65. Sobhy, M. (2014), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mechanica, 225(9), 2521-2538. https://doi.org/10.1007/s00707-014-1093-5
  66. Stolken, J. and Evans, A. (1998), "A microbend test method for measuring the plasticity length scale", Acta Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  67. Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Method. Eng., 91(6), 571-603. https://doi.org/10.1002/nme.4282
  68. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013a),"Thermal buckling behavior of nanobeam usin an efficient higher-order nonlocal beam theory", J. Nanomech. Micromech. (ASCE), 3(3), 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  69. Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013b), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  70. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013c), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  71. Valizadeh, N., Natarajan, S., Gonzalez-Estrada, O.A., Rabczuk, T., Bui, T.Q. and Bordas, S.P.A. (2013), "NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter", Compos. Struct., 99, 309-326. https://doi.org/10.1016/j.compstruct.2012.11.008
  72. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", In: Materials Science Forum, Volume 492-493, pp. 255-260. https://doi.org/10.4028/www.scientific.net/MSF.492-493.255
  73. Yaghoobi, H. and Torabi, M. (2013), "Exact solution for thermal buckling of functionally graded plates resting on elastic foundations with various boundary conditions", J. Therm. Stresses, 36(9), 869-894. https://doi.org/10.1080/01495739.2013.770356
  74. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  75. Zhuang, X., Huang, R., Zhu, H., Askes, H. and Mathisen, K. (2013), "A new and simple locking-free triangular thick plate element using independent shear degrees of freedom", Finite Elem. Anal. Des., 75, 1-7. https://doi.org/10.1016/j.finel.2013.06.005
  76. Ziane, N., Meftah, S.A., Ruta, G., Tounsi, A. and Adda Bedia, E.A. (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., Int. J., 54(3), 579-595. https://doi.org/10.12989/sem.2015.54.3.579
  77. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  78. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0

피인용 문헌

  1. Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams vol.24, pp.11, 2017, https://doi.org/10.1080/15376494.2016.1196795
  2. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  3. Size-dependent thermoelastic analysis of a functionally graded nanoshell vol.32, pp.03, 2018, https://doi.org/10.1142/S0217984918500331
  4. Forced vibration analysis of functionally graded porous deep beams vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.013
  5. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  6. Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1087
  7. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
  8. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects vol.120, 2017, https://doi.org/10.1016/j.ijmecsci.2016.11.025
  9. Buckling analysis of tapered nanobeams using nonlocal strain gradient theory and a generalized differential quadrature method vol.4, pp.6, 2017, https://doi.org/10.1088/2053-1591/aa7111
  10. A refined theory with stretching effect for the flexure analysis of laminated composite plates vol.11, pp.5, 2016, https://doi.org/10.12989/gae.2016.11.5.671
  11. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
  12. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  13. Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation vol.40, pp.2, 2017, https://doi.org/10.1080/01495739.2016.1229146
  14. Nonlocal vibration analysis of FG nano beams with different boundary conditions vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.085
  15. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0452-6
  16. Isogeometric buckling analysis of composite variable-stiffness panels vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.016
  17. Nonlocal Timoshenko Beam for Vibrations of Magnetically Affected Inclined Single-Walled Carbon Nanotubes as Nanofluidic Conveyors vol.131, pp.6, 2017, https://doi.org/10.12693/APhysPolA.131.1439
  18. Free vibration of symmetric and sigmoid functionally graded nanobeams vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0324-0
  19. Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets vol.25, pp.11, 2016, https://doi.org/10.1088/0964-1726/25/11/115040
  20. Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads vol.161, 2017, https://doi.org/10.1016/j.compstruct.2016.10.135
  21. A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.058
  22. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  23. Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates vol.132, pp.10, 2017, https://doi.org/10.1140/epjp/i2017-11666-6
  24. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0511-z
  25. A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.257
  26. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  27. Large-Amplitude Vibration of Functionally Graded Doubly-Curved Panels Under Heat Conduction vol.55, pp.12, 2017, https://doi.org/10.2514/1.J055878
  28. Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1347
  29. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  30. Free vibration investigation of nano mass sensor using differential transformation method vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0796-6
  31. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams vol.112, 2017, https://doi.org/10.1016/j.spmi.2017.09.010
  32. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  33. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  34. Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory vol.113, 2016, https://doi.org/10.1016/j.ijmecsci.2016.04.014
  35. On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory vol.162, 2017, https://doi.org/10.1016/j.compstruct.2016.11.058
  36. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  37. Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory 2017, https://doi.org/10.1016/j.aej.2017.07.003
  38. Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.07.013
  39. Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality vol.36, pp.3, 2017, https://doi.org/10.1177/0263092317700153
  40. A novel four variable refined plate theory for laminated composite plates vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.713
  41. A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
  42. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  43. Interfacial stresses in RC beam bonded with a functionally graded material plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.693
  44. Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory vol.23, pp.7, 2017, https://doi.org/10.1007/s00542-016-2933-0
  45. On guided wave propagation in fully clamped porous functionally graded nanoplates vol.143, 2018, https://doi.org/10.1016/j.actaastro.2017.12.011
  46. Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0273-7
  47. Investigating post-buckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.008
  48. On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0399-7
  49. Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties vol.5, pp.4, 2016, https://doi.org/10.12989/amr.2016.5.4.205
  50. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  51. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  52. Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories vol.67, 2018, https://doi.org/10.1016/j.euromechsol.2017.09.004
  53. A study on nonlinear vibration behavior of CNT-based representative volume element vol.55, 2016, https://doi.org/10.1016/j.ast.2016.06.005
  54. Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter vol.132, pp.6, 2017, https://doi.org/10.1140/epjp/i2017-11551-4
  55. Dynamic buckling of polymer–carbon nanotube–fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments 2017, https://doi.org/10.1177/1099636217743288
  56. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
  57. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  58. Influence of size effect on flapwise vibration behavior of rotary microbeam and its analysis through spectral meshless radial point interpolation vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0955-9
  59. Nonlinear bending of a two-dimensionally functionally graded beam vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.087
  60. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.092
  61. An analytical method for free vibration analysis of functionally graded sandwich beams vol.23, pp.1, 2016, https://doi.org/10.12989/was.2016.23.1.059
  62. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.052
  63. Bending analysis of different material distributions of functionally graded beam vol.123, pp.4, 2017, https://doi.org/10.1007/s00339-017-0854-0
  64. Interfacial stress analysis of functionally graded beams strengthened with a bonded hygrothermal aged composite plate vol.24, pp.2, 2017, https://doi.org/10.1080/09276440.2016.1196333
  65. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
  66. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0368-1
  67. Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
  68. Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory 2019, https://doi.org/10.1177/0954406218756451
  69. Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
  70. Size-dependent thermally affected wave propagation analysis in nonlocal strain gradient functionally graded nanoplates via a quasi-3D plate theory vol.232, pp.1, 2018, https://doi.org/10.1177/0954406216674243
  71. Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory vol.166, 2017, https://doi.org/10.1016/j.compstruct.2017.01.036
  72. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0784-x
  73. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  74. Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams vol.28, pp.15, 2017, https://doi.org/10.1177/1045389X16682850
  75. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
  76. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  77. Buckling and free vibration of shallow curved micro/nano-beam based on strain gradient theory under thermal loading with temperature-dependent properties vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0591-9
  78. A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load vol.5, pp.2, 2016, https://doi.org/10.12989/amr.2016.5.2.107
  79. Thermal buckling optimisation of composite plates using firefly algorithm vol.29, pp.4, 2017, https://doi.org/10.1080/0952813X.2016.1259267
  80. Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams vol.322, 2017, https://doi.org/10.1016/j.cma.2017.05.007
  81. Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness vol.19, pp.3, 2016, https://doi.org/10.1016/j.jestch.2016.05.014
  82. Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment vol.7, pp.2, 2016, https://doi.org/10.1080/19475411.2016.1191556
  83. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0542-5
  84. Dynamic modeling of porous heterogeneous micro/nanobeams vol.132, pp.12, 2017, https://doi.org/10.1140/epjp/i2017-11754-7
  85. Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection 2019, https://doi.org/10.1080/15376494.2017.1400622
  86. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  87. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.090
  88. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium vol.47, pp.6, 2017, https://doi.org/10.1007/s13538-017-0524-x
  89. Nonlocal nonlinear finite element analysis of composite plates using TSDT vol.185, 2018, https://doi.org/10.1016/j.compstruct.2017.10.075
  90. Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0337-8
  91. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory vol.133, pp.2, 2018, https://doi.org/10.1140/epjp/i2018-11868-4
  92. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
  93. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  94. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method 2018, https://doi.org/10.1016/j.aej.2017.06.001
  95. Nonlocal electro-thermo-mechanical analysis of a sandwich nanoplate containing a Kelvin–Voigt viscoelastic nanoplate and two piezoelectric layers vol.228, pp.2, 2017, https://doi.org/10.1007/s00707-016-1716-0
  96. Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1432797
  97. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1444216
  98. Fracture problems, vibration, buckling, and bending analyses of functionally graded materials: A state-of-the-art review including smart FGMS pp.1548-0046, 2018, https://doi.org/10.1080/02726351.2017.1410265
  99. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  100. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0669-4
  101. Post-buckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4241-3
  102. Non-Local Buckling Analysis of Functionally Graded Nanoporous Metal Foam Nanoplates vol.8, pp.11, 2018, https://doi.org/10.3390/coatings8110389
  103. On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory pp.1619-6937, 2018, https://doi.org/10.1007/s00707-018-2247-7
  104. 基于Jeeves模式搜索理论地基参数的更新Bayes探测法 vol.19, pp.9, 2018, https://doi.org/10.1631/jzus.A1700573
  105. Dynamic analysis of graded small-scale shells with porosity distributions under transverse dynamic loads vol.133, pp.9, 2018, https://doi.org/10.1140/epjp/i2018-12152-5
  106. Effect of van der Waals force on wave propagation in viscoelastic double-walled carbon nanotubes vol.32, pp.24, 2018, https://doi.org/10.1142/S0217984918502913
  107. Vibration Analysis of Nano Beam Using Differential Transform Method Including Thermal Effect vol.54, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  108. The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates vol.39, pp.9, 2018, https://doi.org/10.1007/s10483-018-2367-9
  109. Forced vibration analysis of cracked nanobeams vol.40, pp.8, 2018, https://doi.org/10.1007/s40430-018-1315-1
  110. Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
  111. Vibration and buckling analysis of a rotary functionally graded piezomagnetic nanoshell embedded in viscoelastic media vol.29, pp.11, 2018, https://doi.org/10.1177/1045389X18770856
  112. Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1487612
  113. An analytical study on the size dependent longitudinal vibration analysis of thick nanorods vol.5, pp.7, 2018, https://doi.org/10.1088/2053-1591/aacf6e
  114. Dynamic stability analysis of microcomposite annular sandwich plate with carbon nanotube reinforced composite facesheets based on modified strain gradient theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218782770
  115. Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezo-magneto-elasticity theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218760667
  116. Free vibration analysis of a piezoelectric curved sandwich nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal elasticity theories vol.133, pp.5, 2018, https://doi.org/10.1140/epjp/i2018-12015-1
  117. Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes vol.51, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  118. Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method vol.134, pp.1, 2019, https://doi.org/10.1140/epjp/i2019-12446-0
  119. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
  120. Modal participation of fixed–fixed single-walled carbon nanotube with vacancies pp.2008-6695, 2019, https://doi.org/10.1007/s40091-019-0222-8
  121. An analytical approach for buckling of functionally graded plates vol.5, pp.3, 2016, https://doi.org/10.12989/amr.2016.5.3.141
  122. A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates vol.22, pp.5, 2016, https://doi.org/10.12989/scs.2016.22.5.975
  123. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2016, https://doi.org/10.12989/gae.2017.12.1.009
  124. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  125. Non-linear study of mode II delamination fracture in functionally graded beams vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.263
  126. A non-polynomial four variable refined plate theory for free vibration of functionally graded thick rectangular plates on elastic foundation vol.23, pp.3, 2016, https://doi.org/10.12989/scs.2017.23.3.317
  127. Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams vol.6, pp.1, 2016, https://doi.org/10.12989/amr.2017.6.1.013
  128. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  129. Buckling temperature of a single-walled boron nitride nanotubes using a novel nonlocal beam model vol.5, pp.1, 2017, https://doi.org/10.12989/anr.2017.5.1.001
  130. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2016, https://doi.org/10.12989/sss.2017.19.3.289
  131. Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2016, https://doi.org/10.12989/sem.2017.62.2.143
  132. Analysis of functionally graded plates using a sinusoidal shear deformation theory vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.441
  133. A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates vol.62, pp.4, 2017, https://doi.org/10.12989/sem.2017.62.4.401
  134. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  135. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2016, https://doi.org/10.12989/sss.2017.19.6.601
  136. Bending behavior of SWCNT reinforced composite plates vol.24, pp.5, 2016, https://doi.org/10.12989/scs.2017.24.5.537
  137. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  138. Free vibrations of laminated composite plates using a novel four variable refined plate theory vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.603
  139. Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory vol.63, pp.3, 2016, https://doi.org/10.12989/sem.2017.63.3.401
  140. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2016, https://doi.org/10.12989/cac.2017.20.2.229
  141. An original single variable shear deformation theory for buckling analysis of thick isotropic plates vol.63, pp.4, 2017, https://doi.org/10.12989/sem.2017.63.4.439
  142. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2016, https://doi.org/10.12989/sem.2017.63.5.585
  143. An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2016, https://doi.org/10.12989/eas.2017.13.3.255
  144. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  145. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.369
  146. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
  147. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2016, https://doi.org/10.12989/sem.2017.64.2.145
  148. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  149. An analytical solution for bending and vibration responses of functionally graded beams with porosities vol.25, pp.4, 2016, https://doi.org/10.12989/was.2017.25.4.329
  150. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  151. Effects of triaxial magnetic field on the anisotropic nanoplates vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.361
  152. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  153. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2016, https://doi.org/10.12989/eas.2017.13.5.509
  154. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2016, https://doi.org/10.12989/sem.2017.64.4.391
  155. Vibration analysis of micro composite thin beam based on modified couple stress vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.403
  156. Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates vol.20, pp.5, 2017, https://doi.org/10.12989/sss.2017.20.5.573
  157. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  158. Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment vol.20, pp.6, 2016, https://doi.org/10.12989/sss.2017.20.6.709
  159. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
  160. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.717
  161. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.735
  162. The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.053
  163. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103
  164. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2016, https://doi.org/10.12989/sem.2018.65.5.621
  165. Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.039
  166. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.057
  167. Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory vol.26, pp.6, 2016, https://doi.org/10.12989/scs.2018.26.6.663
  168. Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
  169. Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core vol.65, pp.6, 2016, https://doi.org/10.12989/sem.2018.65.6.657
  170. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  171. Geometrically nonlinear analysis of a laminated composite beam vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.027
  172. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.061
  173. Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects vol.21, pp.4, 2018, https://doi.org/10.12989/cac.2018.21.4.431
  174. Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2016, https://doi.org/10.12989/sem.2018.66.2.249
  175. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2016, https://doi.org/10.12989/sss.2018.21.4.397
  176. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
  177. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  178. Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.371
  179. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2016, https://doi.org/10.12989/sem.2018.66.3.353
  180. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.711
  181. Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation vol.21, pp.5, 2018, https://doi.org/10.12989/cac.2018.21.5.569
  182. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2016, https://doi.org/10.12989/scs.2018.27.4.465
  183. Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
  184. Large deflection analysis of a fiber reinforced composite beam vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.567
  185. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.599
  186. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2016, https://doi.org/10.12989/anr.2018.6.2.147
  187. Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.761
  188. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  189. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2016, https://doi.org/10.12989/scs.2018.28.1.013
  190. Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2016, https://doi.org/10.12989/sem.2018.67.1.021
  191. Technical and economical assessment of applying silica nanoparticles for construction of concrete structures vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.117
  192. Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory vol.22, pp.1, 2016, https://doi.org/10.12989/sss.2018.22.1.027
  193. Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory vol.28, pp.3, 2016, https://doi.org/10.12989/scs.2018.28.3.381
  194. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.291
  195. Numerical study for vibration response of concrete beams reinforced by nanoparticles vol.67, pp.3, 2018, https://doi.org/10.12989/sem.2018.67.3.311
  196. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.517
  197. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  198. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  199. Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory vol.15, pp.3, 2016, https://doi.org/10.12989/eas.2018.15.3.285
  200. Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.749
  201. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/sss.2018.22.3.303
  202. Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory vol.15, pp.4, 2018, https://doi.org/10.12989/eas.2018.15.4.369
  203. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.247
  204. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.269
  205. Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position vol.5, pp.6, 2016, https://doi.org/10.12989/aas.2018.5.6.691
  206. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2016, https://doi.org/10.12989/sss.2018.22.5.527
  207. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  208. Critical buckling loads of carbon nanotube embedded in Kerr's medium vol.6, pp.4, 2016, https://doi.org/10.12989/anr.2018.6.4.339
  209. Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
  210. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method vol.69, pp.2, 2016, https://doi.org/10.12989/sem.2019.69.2.205
  211. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.019
  212. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2016, https://doi.org/10.12989/was.2019.28.1.049
  213. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  214. Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load vol.7, pp.1, 2016, https://doi.org/10.12989/acc.2019.7.1.051
  215. Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory vol.16, pp.2, 2019, https://doi.org/10.12989/eas.2019.16.2.177
  216. Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress vol.23, pp.2, 2016, https://doi.org/10.12989/sss.2019.23.2.141
  217. On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.487
  218. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.511
  219. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2016, https://doi.org/10.12989/anr.2019.7.2.089
  220. Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method vol.7, pp.2, 2016, https://doi.org/10.12989/anr.2019.7.2.109
  221. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2016, https://doi.org/10.12989/sem.2019.69.6.637
  222. Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers vol.23, pp.3, 2016, https://doi.org/10.12989/sss.2019.23.3.215
  223. Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT) vol.57, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.57.117
  224. Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model vol.57, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.57.136
  225. Participation Factor and Vibration of Carbon Nanotube with Vacancies vol.57, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.57.158
  226. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams vol.57, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.57.175
  227. Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.055
  228. Buckling behavior of rectangular plates under uniaxial and biaxial compression vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.113
  229. Dynamic response of metal foam FG porous cylindrical micro-shells due to moving loads with strain gradient size-dependency vol.134, pp.5, 2016, https://doi.org/10.1140/epjp/i2019-12540-3
  230. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  231. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2016, https://doi.org/10.12989/anr.2019.7.3.191
  232. Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate vol.16, pp.5, 2016, https://doi.org/10.12989/eas.2019.16.5.601
  233. Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2016, https://doi.org/10.12989/sem.2019.70.4.407
  234. A Novel Refined Plate Theory for Free Vibration Analyses of Single-Layered Graphene Sheets Lying on Winkler-Pasternak Elastic Foundations vol.58, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.58.151
  235. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2016, https://doi.org/10.12989/gae.2019.18.2.161
  236. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2016, https://doi.org/10.12989/scs.2019.31.5.503
  237. Numerical analysis for free vibration of hybrid laminated composite plates for different boundary conditions vol.70, pp.5, 2019, https://doi.org/10.12989/sem.2019.70.5.535
  238. Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities vol.8, pp.3, 2016, https://doi.org/10.12989/csm.2019.8.3.247
  239. Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities vol.6, pp.2, 2016, https://doi.org/10.12989/smm.2019.6.2.147
  240. Conformable solution of fractional vibration problem of plate subjected to in-plane loads vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.347
  241. Chaotic dynamics of a non-autonomous nonlinear system for a smart composite shell subjected to the hygro-thermal environment vol.25, pp.7, 2019, https://doi.org/10.1007/s00542-018-4206-6
  242. Stability analysis of embedded graphene platelets reinforced composite plates in thermal environment vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12581-6
  243. Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports vol.233, pp.16, 2016, https://doi.org/10.1177/0954406219855095
  244. Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates vol.6, pp.9, 2019, https://doi.org/10.1088/2053-1591/ab3474
  245. Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials vol.8, pp.3, 2016, https://doi.org/10.12989/amr.2019.8.3.179
  246. Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment vol.8, pp.3, 2019, https://doi.org/10.12989/amr.2019.8.3.237
  247. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  248. Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model vol.72, pp.1, 2016, https://doi.org/10.12989/sem.2019.72.1.071
  249. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2016, https://doi.org/10.12989/cac.2019.24.4.347
  250. A Non-Linear Spring Model for Predicting Modal Behavior of Oscillators Built from Double Walled Carbon Nanotubes vol.60, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.60.21
  251. The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory vol.7, pp.6, 2016, https://doi.org/10.12989/anr.2019.7.6.443
  252. Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory vol.17, pp.5, 2016, https://doi.org/10.12989/eas.2019.17.5.447
  253. Dynamic modeling of a multi-scale sandwich composite panel containing flexible core and MR smart layer vol.134, pp.12, 2016, https://doi.org/10.1140/epjp/i2019-12662-6
  254. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2016, https://doi.org/10.12989/scs.2019.33.5.699
  255. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  256. Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2016, https://doi.org/10.12989/scs.2019.33.6.805
  257. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
  258. Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams vol.42, pp.1, 2016, https://doi.org/10.1007/s40430-019-2118-8
  259. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2016, https://doi.org/10.12989/sem.2020.73.2.209
  260. Hygrothermal postbuckling analysis of smart multiscale piezoelectric composite shells vol.135, pp.2, 2016, https://doi.org/10.1140/epjp/s13360-020-00137-w
  261. Effect of Microstructure and Surface Energy on the Static and Dynamic Characteristics of FG Timoshenko Nanobeam Embedded in an Elastic Medium vol.61, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jnanor.61.97
  262. Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2016, https://doi.org/10.12989/anr.2020.8.2.135
  263. Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity vol.8, pp.2, 2016, https://doi.org/10.12989/anr.2020.8.2.157
  264. Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method vol.34, pp.3, 2020, https://doi.org/10.12989/scs.2020.34.3.361
  265. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  266. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.147
  267. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2016, https://doi.org/10.12989/acc.2020.9.4.397
  268. Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams vol.5, pp.2, 2016, https://doi.org/10.12989/acd.2020.5.2.177
  269. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2016, https://doi.org/10.12989/anr.2020.8.3.203
  270. Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.175
  271. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.409
  272. Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory vol.35, pp.4, 2016, https://doi.org/10.12989/scs.2020.35.4.545
  273. Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2016, https://doi.org/10.12989/sss.2020.25.5.619
  274. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2016, https://doi.org/10.12989/csm.2020.9.3.281
  275. Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates vol.74, pp.6, 2020, https://doi.org/10.12989/sem.2020.74.6.809
  276. Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects vol.25, pp.6, 2020, https://doi.org/10.12989/sss.2020.25.6.707
  277. Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT vol.36, pp.3, 2016, https://doi.org/10.1007/s00366-019-00732-1
  278. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory vol.48, pp.4, 2016, https://doi.org/10.1080/15397734.2019.1642766
  279. Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium vol.75, pp.1, 2016, https://doi.org/10.12989/sem.2020.75.1.109
  280. Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force vol.9, pp.1, 2016, https://doi.org/10.12989/anr.2020.9.1.047
  281. Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression vol.26, pp.1, 2020, https://doi.org/10.12989/cac.2020.26.1.021
  282. Strain gradient based static stability analysis of composite crystalline shell structures having porosities vol.36, pp.6, 2016, https://doi.org/10.12989/scs.2020.36.6.631
  283. Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions vol.36, pp.6, 2016, https://doi.org/10.12989/scs.2020.36.6.689
  284. Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes vol.36, pp.4, 2016, https://doi.org/10.1007/s00366-019-00790-5
  285. Analyzing nonlocal nonlinear vibrations of two-phase geometrically imperfect piezo-magnetic beams considering piezoelectric reinforcement scheme vol.55, pp.7, 2020, https://doi.org/10.1177/0309324720917285
  286. Thermal postbuckling behavior of CNT-reinforced composite sandwich plate models resting on elastic foundations with tangentially restrained edges and temperature-dependent properties vol.33, pp.10, 2016, https://doi.org/10.1177/0892705719828789
  287. A Critical Review of Recent Research of Free Vibration and Stability of Functionally Graded Materials of Sandwich Plate vol.1094, pp.1, 2021, https://doi.org/10.1088/1757-899x/1094/1/012081
  288. A boundary integral investigation for unsteady modified Helmholtz problems of some other classes of anisotropic functionally graded materials vol.10, pp.1, 2016, https://doi.org/10.1142/s2047684121500056
  289. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.533
  290. State of the art in functionally graded materials vol.262, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.113596
  291. Wave dispersion of nanobeams incorporating stretching effect vol.31, pp.4, 2016, https://doi.org/10.1080/17455030.2019.1607623
  292. Mass density effect on vibration of zigzag and chiral SWCNTs: A theoretical study vol.23, pp.6, 2016, https://doi.org/10.1177/1099636220906257
  293. On vibration of functionally graded sandwich nanoplates in the thermal environment vol.23, pp.6, 2016, https://doi.org/10.1177/1099636220909790