DOI QR코드

DOI QR Code

Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae

수소생산을 위한 해조류 유래 수용액 상 바이오오일의 수증기 개질 반응

  • Park, Yong Beom (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Hankwon (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Woo, Hee-Chul (Department of Chemical Engineering, Pukyong National University)
  • 박용범 (부경대학교 공과대학 화학공학과) ;
  • 임한권 (대구가톨릭대학교 공과대학 신소재화학공학과) ;
  • 우희철 (부경대학교 공과대학 화학공학과)
  • Received : 2016.01.12
  • Accepted : 2016.01.20
  • Published : 2016.02.01

Abstract

Hydrogen production via steam reforming of bio-oil from algal biomass over fast pyrolysis with commercial catalysts was carried out. Aqueous bio-oil obtained by phase separation from a crude oil over fast pyrolysis was used as a reactant and comparison studies for activity over different catalysts (FCR-4-02, POS-7, Cat. A, RUA), reaction temperature, and steam/carbon (S/C) ratios were performed. Experimental results showed that different catalytic activities were observed with different S/C ratios and catalyst composition and the highest hydrogen yield of 70% was obtained with a POS-7 catalyst at a S/C ratio of 10 and 1073 K.

해조류 유래 급속열분해를 통해 생성된 바이오오일로부터 수소가스를 생산하기 위해 상용 개질 촉매를 사용하여 수증기 개질 반응을 수행하였다. 반응원료로 급속열분해로부터 생성되는 crude 바이오오일의 상분리를 통해 얻어진 수용액상의 바이오오일이 사용되었으며, 상용 개질 촉매(FCR-4-02, POS-7, Cat. A, RUA), 반응온도 및 수증기/탄소(S/C) 비율에 따른 수증기 개질 반응의 활성을 비교 연구하였다. 실험 결과 원료의 S/C 비율과 촉매의 구성성분에 따라 반응활성이 크게 달라지는 것이 확인되었으며, 특히 POS-7 촉매를 사용한 1073 K, S/C 비율 10의 조건에서의 수증기 개질 반응에서 가장 높은 수소 수율(70%)이 확인되었다.

Keywords

References

  1. David, S. S., "Inside Fuelcells," International Journal of Hydrogen Energy, 29(12), 1203-1211(2004). https://doi.org/10.1016/j.ijhydene.2004.01.013
  2. Stephen, E. and James, E., "A Cost Comparison of Fuel-cell and Battery Electric Vehicles," Journal of Power Sources, 130, 208-212(2004). https://doi.org/10.1016/j.jpowsour.2003.12.016
  3. Sonal, S., Shikha, J., Venkateswaran, P. S., Avanish, K. T., Mansa, R. N., Jitendra, K. P. and Sanket, G., "Hydrogen: A Sustainable Fuel for Future of the Transport Sector," Renewable and Sustainable Energy Reviews, 51, 623-633(2015). https://doi.org/10.1016/j.rser.2015.06.040
  4. Park, S., Bang, Y., Han S. J., Yoo, J., Song, J. H., Song, J. C., Lee, J. and Song, I. K., "Hydrogen Production by Steam Reforming of Liquefied Natural Gas (LNG) over Mesoporous Nickel-iron-alumina Catalysts," International Journal of Hydrogen Energy, 40(17), 5869-5877(2015). https://doi.org/10.1016/j.ijhydene.2015.03.016
  5. Feyza, K. Burcu, S. C., Z. Llsen, O. and A. Erhan, A., "Hydrogen Production by Autothermal Reforming of LPG for PEM Fuel cell Applications," International Journal of Hydrogen Energy, 33(4), 1383-1391(2008). https://doi.org/10.1016/j.ijhydene.2007.12.050
  6. Elka, K., Marga, M. P., Astrid, J. and Heike, E., "Hydrogen Production by Bioethanol Partial Oxidation over Ni Based Catalysts," Applied Catalysis B: Environmental, 179, 509-520(2015). https://doi.org/10.1016/j.apcatb.2015.06.004
  7. Lihong, H., Fangbai, Z., Rongrong, C. and Andrew, T. H., "Manganese-promoted Nickel/alumina Catalysts for Hydrogen Production Via Auto-thermal Reforming Ethanol," International Journal of Hydrogen Energy, 37(21), 15908-15913(2012). https://doi.org/10.1016/j.ijhydene.2012.08.050
  8. Huber, G. W., Iborra, S. and Corma, A., "Synthesis of Transportation Fuels From Biomass: Chemistry, Catalysts, and Engineering," Chemical Reviews, 106, 4044-4098(2006). https://doi.org/10.1021/cr068360d
  9. Rostrup-Nielsen, J. R., Sehested, J. and Norskov, J. K., "Hydrogen and Synthesis Gas by Steam- and $CO_2$ Refirming," Advances in Catalysis, 47, 65-139(2002).
  10. Wu, C., Huang, Q., Sui, M., Yan, Y. and Wang, F., "Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-oil in a Two-stage Fixed Bed Reactor System," Fuel Process Technology, 89(12), 1306-1316(2008). https://doi.org/10.1016/j.fuproc.2008.05.018
  11. Fatsikostas, A. N. and Verykios, X. E., "Reaction Network of Steam Reforming of Ethanol over Ni-based Catalysts," Journal of Catalysis, 225(2), 439-452(2004). https://doi.org/10.1016/j.jcat.2004.04.034
  12. Luo, L., Van der Voet, E. and Huppes, G., "Biorefining of Lignocellulosic Feedstock - Technical, Economic and Environmental Considerations," Bioresource Technology, 101, 5023-5032(2010). https://doi.org/10.1016/j.biortech.2009.12.109
  13. Christensen, J. M., Mortensen, P. M., Trane, R., Jensen A. D. and Jensen, P. A., "Effects of $H_2S$ and Process Conditions in the Synthesis of Mixed Alcohols from Syngas over Alkali Promoted Cobalt-molybdenum Sulfide," Applied Catalysis A: General, 366, 29-43(2009). https://doi.org/10.1016/j.apcata.2009.06.034
  14. Raffelt, K., Henrich, E., Kogel, A., Stahl, R., Steinhardt, J. and Weirich, F., "The BTL2 Process of Biomass Utilization Entrainedflow Gasification of Pyrolyzed Biomass Slurries," Applied Biochemistry and Biotechnology, 129, 153-164(2006). https://doi.org/10.1385/ABAB:129:1:153
  15. Choi, J. H., Woo, H. C. and Suh, D. J., "Pyrolysis of Seaweeds for Bio-oil and Bio-char Production," Chemical Engineering Transactions, 37, 121-126(2014).
  16. Ping, L., Qingli, X., Ming, Z., Lihong, L., Suping, Z. and Yongjie, Y., "Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed and Fluidized Bed Reactors," Chemical Engineering Technology, 33(12), 2021-2028(2010). https://doi.org/10.1002/ceat.201000169
  17. Medrano, J. A., Oliva, M., Ruiz, J. and Garcia, L., "Hydrogen from Aqueous Fraction of Biomass Pyrolysis Liquids by Catalytic Steam Reforming in Fluidized Bed," Energy, 36, 2215-2224(2011). https://doi.org/10.1016/j.energy.2010.03.059

Cited by

  1. 분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구 vol.54, pp.6, 2016, https://doi.org/10.9713/kcer.2016.54.6.854
  2. Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구 vol.23, pp.1, 2016, https://doi.org/10.7464/ksct.2017.23.1.104
  3. Chitosan as a Flocculant: An Approach to Improve its Solubility for Efficient Harvesting of Microalgae vol.55, pp.4, 2016, https://doi.org/10.9713/kcer.2017.55.4.530
  4. 톱밥으로부터 생산되는 개질 바이오오일 생산공장의 공정모사 및 경제성 분석 vol.56, pp.4, 2016, https://doi.org/10.9713/kcer.2018.56.4.496