뇌종양 환자의 양성자 치료 시 Range Compensator의 Smooth Thickness 적용에 따른 선량비교

Dose comparison according to Smooth Thickness application of Range compensator during proton therapy for brain tumor patient

  • 김태완 (국립암센터 양성자치료센터) ;
  • 김대웅 (국립암센터 양성자치료센터) ;
  • 김재원 (국립암센터 양성자치료센터) ;
  • 정경식 (국립암센터 양성자치료센터)
  • Kim, Tae Woan (Department of Proton Therapy Center, National Cancer Center) ;
  • Kim, Dae Woong (Department of Proton Therapy Center, National Cancer Center) ;
  • Kim, Jae Weon (Department of Proton Therapy Center, National Cancer Center) ;
  • Jeong, Kyeong Sik (Department of Proton Therapy Center, National Cancer Center)
  • 투고 : 2016.11.11
  • 심사 : 2016.12.10
  • 발행 : 2016.12.30

초록

목 적 : 양성자 치료 시 사용되는 Range Compensator는 Target의 Distal Margin의 선량에 대해 정상조직에 전달되는 양성자 빔 선량을 보정하는 역할을 한다. 이에 뇌종양 치료에 사용되는 Range Compensator의 Smooth Thickness를 다르게 적용함에 따른 PTV와 OAR의 선량을 비교하여 대상 부위의 선량이 개선되는 것을 확인해 보고자 한다. 대상 및 방법 : 본원에서 양성자 치료를 받은 뇌종양 환자 10명을 대상으로 Eclipse Proton Planning System(Version 10.0, Varian, USA)의 Compensator Editor를 사용하여 Range Compensator에 적용되는 Smooth Thickness를 각각 1회에서 5회까지 순차적으로 적용하였다. 치료계획의 알고리즘은 Proton Convolution Superposition(version 8.1.20 or 10.0.28)을 사용하였고, Smooth Thickness를 단계적으로 적용함에 따른 PTV의 Dmax, Dmin, Homogeneity Index, Conformity Index 그리고 종양주위의 OAR 선량을 비교하였다. 결 과 : Smooth Thickness를 1회에서 5회까지 적용하였을 때 PTV의 최대선량(Dmax)은 최대 4.3%, 최소 0.8%, 평균 1.81% 감소하였으며, 최소선량(Dmin)은 최대 1.8%, 최소 0.2%, 평균 0.82% 증가하였고, 최대선량과 최소선량의 차이는 최대 5.9%, 최소 1.4%, 평균 2.63% 감소하였다. Homogeneity Index는 평균 0.018 감소하였고 Conformity Index는 거의 변화가 없었다. OAR 선량은 Brain Stem에서 최대 1.6%, 최소 0.1%, 평균 0.59% 감소하였으며, Optic Chiasm에서 최대 1.3%, 최소 0.3%, 평균 0.45% 감소하였으나, C와 E환자가 각각 0.3%, 0.6% 증가하였다. 그리고 Rt. Optic Nerve에서 최대 1.5%, 최소 0.3%, 평균 0.8% 감소하였으나, B환자가 0.1% 증가하였다. Lt. Optic Nerve에서는 최대 1.8%, 최소 0.3%, 평균 0.67% 감소하였으나, H환자가 0.4% 증가하였다. 결 론 : 뇌종양 환자의 양성자 치료에 사용되는 Range Compensator의 Smooth Thickness가 단계적으로 적용될수록 Compensator의 해상도가 증가하여 가장 최적화된 양성자 빔 선량을 전달할 수 있다. 이는 PTV에 좀 더 균일한 선량을 조사할 수 있고 또한 OAR에 작용하는 불필요한 선량을 감소시켜 부작용을 줄일 수 있을 것으로 사료된다.

Purpose : Range Compensator used for proton therapy compensates the proton beam dose which delivers to the normal tissues according to the Target's Distal Margin dose. We are going to check the improvement of dose on the target part by comparing the dose of PTV and OAR according to applying in different method of Smooth Thickness of Range Compensator which is used in brain tumor therapy. Materials and Methods : For 10 brain tumor patients taking proton therapy in National Cancer Center, Apply Smooth Thickness applied in Range Compensator in order from one to five by using Compensator Editor of Eclipse Proton Planning System(Version 10.0, Varian, USA). The therapy plan algorithm used Proton Convolution Superposition(version 8.1.20 or 10.0.28), and we compared Dmax, Dmin, Homogeneity Index, Conformity Index and OAR dose around tumor by applying Smooth Thickness in phase. Results : When Smooth Thickness was applied from one to five, the Dmax of PTV was decreased max 4.3%, minimum at 0.8 and average of 1.81%. Dmin increased max 1.8%, min 1.8% and average. Difference between max dose and minimum dose decreased at max 5.9% min 1.4% and average 2.6%. Homogeneity Index decreased average of 0.018 and Conformity Index didn't had a meaningful change. OAR dose decreased in Brain Stem at max 1.6%, min 0.1% and average 0.6% and in Optic Chiasm max 1.3%, min 0.3%, and average 0.5%. However, patient C and patient E had an increase each 0.3% and 0.6%. Additionally, in Rt. Optic Nerve, there was a decrease at max 1.5%, min 0.3%, and average 0.8%, however, patient B had 0.1% increase. In Lt. Optic Nerve, there was a decrease at max 1.8%, min 0.3%, and average 0.7%, however, patient H had 0.4 increase. Conclusion : As Smooth Thickness of Range Compensator which is used as the proton treatment for brain tumor patients is applied in stages, the resolution of Compensator increased and as a result the most optimized amount of proton beam dose can be delivered. This is considered to be able to irradiate the equal amount at PTV and reduce the unnecessary dose applied at OAR to reduce the side effects.

키워드

참고문헌

  1. Dae Yong Kim, Sung Yong Park: Proton Beam Therapy, J Korean Med Assoc 2008;51:638-642 https://doi.org/10.5124/jkma.2008.51.7.638
  2. Wioletta Wieszczycka Waldemar H. Scharf: Introduction, Proton Radiotherapy Accelerators, 1st ed, Singapore;World Scientific Publising Co. Pte. Ltd 2001;1-23
  3. Petti PL: New compensator design options for chargedparticle radiotherapy, Phys Med Biol 1997;42:1289-1300 https://doi.org/10.1088/0031-9155/42/7/005
  4. Urie M, Goitein M, Wagner M: Compensating for heterogeneities in proton radiation therapy, Phys Med Biol 1984;29:553-566 https://doi.org/10.1088/0031-9155/29/5/008
  5. Wagner MS: Automated range compensation for proton therapy, Med Phys 1982;9:749-752 https://doi.org/10.1118/1.595123
  6. Zhao Q, Wu H, Das I: Quality assurance of proton compensators, World Congress on Med Phys Biomed Eng 2013;39:1719-22
  7. Art A. Tabibian, Adam P, Keith D: Is there a clinical benefit with a smooth compensator design compared with a plunged compensator design for passive scattered protons, Med Dosimetry 2015;40:37-43 https://doi.org/10.1016/j.meddos.2014.07.004