DOI QR코드

DOI QR Code

Effects of Commercial Nitrilase Hydrolysis on Acrylic Fabrics

  • Kim, Hye Rim (Dept. of Clothing and Textiles, Sookmyung Women's University) ;
  • Seo, Hye Young (Dept. of Clothing and Textiles, Sookmyung Women's University)
  • 투고 : 2016.11.07
  • 심사 : 2016.12.23
  • 발행 : 2016.12.31

초록

This study aims to evaluate the hydrolytic activity of a commercial nitrilase and optimize nitrilase treatment conditions to apply eco-friendly finishing on acrylic fabrics. To assess the possibility of hydrolyzing nitrile bonds in acrylic fabric using a commercial nitrilase, the amounts of hydrolysis products, ammonia and carboxylate ions, were measured. The treatment conditions were optimized via the amount of ammonia. The formation of carboxylate ions on the fabric surface was detected by X-ray photoelectron spectroscopy and wettability measurements. After nitrilase treatment, ammonia was detected in the treatment liquid; thus, nitrilase hydrolyzed the nitrile bonds in acrylic woven fabric. The largest amount of ammonia was released into the treatment liquid under the following conditions: pH 8.0, $40^{\circ}C$, and a treatment time of 5 h. The formation of carboxylate ions on the acrylic woven fabric surface by nitrilase hydrolysis was proven by the increased O1s content measuring of XPS analysis. From comparison of the results of nitrilase and alkaline hydrolysis, the white index and strength of the alkali-hydrolyzed acrylic fabric decreased, whereas those of the nitrilase-hydrolyzed samples were maintained. The nitrilase hydrolysis improved the sensitivity of acrylic fabrics to basic dye similarly to alkaline hydrolysis without the drawbacks of yellowing and decreased strength caused by alkaline hydrolysis.

키워드

참고문헌

  1. Babu, V., Shilpi, Gupta, M., & Choudhury, B. (2011). Opportunities and challenges for enzymatic surface modification of synthetic polymers. In S. K. Sharma & A. Mudhoo (Eds.), Green chemistry for environmental sustainability (pp. 93-104). New York, NY: CRC Press.
  2. Banerjee, A., Sharma, R., & Banerjee, U. C. (2003). A rapid and sensitive fluorometric assay method for the determination of nitrilase activity. Biotechnology and Applied Biochemistry, 37(3), 289-293. doi:10.1042/BA20020106
  3. Battistel, E., Morra, M., & Marinetti, M. (2001). Enzymatic surface modification of acrylonitrile fibers. Applied Surface Science, 177 (1-2), 32-41. doi:10.1016/S0169-4332(01)00193-3
  4. Blyth, R. I. R., Buqa, H., Netzer, F. P., Ramseya, M. G., Besenhard, J. O., Golobic, P., & Winterb, M. (2000). XPS studies of graphite electrode materials for lithium ion batteries. Applied Surface Science, 167(1-2), 99-106. doi:10.1016/S0169-4332(00)00525-0
  5. Bornscheuer, U. T., & Kazlauskas, R. J. (2005). Hydrolases in organic synthesis: Regio- and stereoselective biotransformations (2 nd ed.). (pp. 227-240). Manhattan: John Wiley @ Sons.
  6. Fischer-Colbrie, G., Matama, T., Heumann, S., Martinkova, L., Paulo, A. C., & Guebitz, G. (2007). Surface hydrolysis of polyacrylonitrile with nitrile hydrolyzing enzymes from micrococcus luteus BST20. Journal of Biotechnology, 129(1), 62-68. doi:10.1016/j.jbiotec.2006.11.018
  7. Gong, J. S., Lu, Z. M., Li, H., Shi, J. S., Zhou, Z. M., & Xu, Z. H. (2012). Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microbial Cell Factories, 11(1), 142-159. doi:10.1186/1475-2859-11-142
  8. Gubitz, G. M., & Cavaco-Paulo, A. (2003). New substrates for reliable enzymes: Enzymatic modification of polymers. Current Opinion in Biotechnology, 14(6), 577-582. doi:10.1016/j.copbio.2003.09.010
  9. Gupta, M. L., Gupta, B., Oppermann, W., & Hartmann, G. (2004). Surface modification of polyacrylonitrile staple fibers via alkaline hydrolysis for superabsorbent applications. Journal of Applied Polymer Science, 91(5), 3127-3133. doi:10.1002/app.13486
  10. Kim, H. R., & Song, W. S. (2010). Lipase treatment to improve hydrophilicity of polyester fabrics. International Journal of Clothing Science and Technology, 22(1), 25-34. doi:10.1108/09556221011008785
  11. Kim, S. H., Lee, T. S., & Park, W. H. (2002). Preparation of antimicrobial fibers through chemical modification of acrylic fibers. Textile Science and Engineering, 39(4), 390-395.
  12. Kobayashi, M., & Shimizu, S. (2000). Nitrile hydrolases. Current Opinion in Chemical Biology, 4(1), 95-102. https://doi.org/10.1016/S1367-5931(99)00058-7
  13. Majumdar, A., Das, S. C., Shripathi, T., & Hippler, R. (2012). Chemical synthesis and surface morphology of amorphous hydrogenated carbon nitride film deposited by $N_2/CH_4$ dielectric barrier discharge plasma. Composite Interfaces, 19(3-4), 161-170. doi:10.1080/15685543.2012.699751
  14. Matama, T., Carneiro, F., Caparros, C., Gubitz, G. M., & Cavaco-Paulo, A. (2007). Using a nitrilase for the surface modification of acrylic fibres. Biotechnology Journal, 2(2), 353-360. doi:10.1002/biot.200600068
  15. Tauber, M. M., Cavaco-Paulo, A., Robra, K. H., & Gubitz, G. M. (2000). Nitrile hydratase and amidase from rhodococcus rhodochrous hydrolyze acrylic fibers and granular polyacrylonitriles. Applied and Environmental Microbiology, 66(4), 1634-1638. doi:10.1128/AEM.66.4.1634-1638.2000
  16. Wang, N., Xu, Y., & Lu, D. N. (2004). Enzymatic surface modification of acrylic fiber. AATCC Review, 4(9), 28-30.