Abstract
Growth of UAV technology leads to expansion of UAV image applications. Many UAV image-based applications use a method called incremental bundle adjustment. However, incremental bundle adjustment produces large computation overhead because it attempts feature matching from all image pairs. For efficient feature matching process we have to confine matching only for overlapping pairs using exterior orientation parameters. When exterior orientation parameters are not available, we cannot determine overlapping pairs. We need another methods for feature matching candidate constitution. In this paper we compare matching candidate constitution methods without exterior orientation parameters, including partial feature matching, Bag-of-keypoints, image intensity method. We use the overlapping pair determination method based on exterior orientation parameter as reference. Experiment results showed the partial feature matching method in the one with best efficiency.
UAV의 발전에 따라 UAV영상의 활용도 늘어나고 있다. 다양한 UAV영상 기반의 어플리케이션에 점진적 번들 조정방법이 널리 사용된다. 그러나, 점진적 번들조정 방법은 중복이 없는 영상 쌍에서도 대응점을 추출해 긴 시간을 소요하게 된다. 이 과정을 효율적으로 처리하기 위해서는 중복지역에서만 대응점 추출연산을 진행해야한다. 만약 영상의 외부표정요소가 있을 경우 이를 기준으로 영상의 중복도를 계산하여 중복지역에서만 대응점 추출이 일어나도록 제한할 수 있다. 그러나 외부표정요소가 없는 영상을 활용하는 경우, 기하학적인 중복지역을 계산할 수 없으므로 다른 후보군 구성 방법의 적용이 필요하다. 본 논문에서는 외부표정 요소가 없는 경우의 대응점 추출 후보군 구성 방법들을 비교해 가장 효율적인 방법을 찾는다. 비교 방법은 일부 특징점, 특징점 군집화, 영상의 밝기를 활용한 후보군 구성방식이며 외부표정요소를 통해 구한 대응점 후보군 구성결과를 기준으로 각 방식을 비교한다. 비교 결과 일부 특징점을 활용하는 것이 가장 효율적으로 나타났다.