DOI QR코드

DOI QR Code

Technology Trends and Future Prospects of Satellite-Based Photovoltaic Electricity Potential

위성기반 태양광 발전가능량 산출기술 개발 동향 및 향후 전망

  • Han, Kyung-Soo (Department of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Jinsoo (Department of Spatial Information Engineering, Pukyong National University)
  • 한경수 (부경대학교 공간정보시스템공학과) ;
  • 김진수 (부경대학교 공간정보시스템공학과)
  • Received : 2016.12.20
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

To obtain a stable energy supply and manage PhotoVoltaic (PV) systems efficiently, satellite imagery methods are being developed to estimate the solar PV potential. This study analyzed trends in the use of satellite imagery in solar PV and solar irradiation estimation technology. The imaging technology is used to produce solar energy resource maps. The trend analysis showed that the level of solar PV technology in Korea is 30% below that of advanced countries. It is impossible to raise such low-level technologies to the levels of advanced countries quickly. Intensive research and development is the only way to achieve the 80% technology level of advanced countries. The information produced in this process can contribute to the management of solar power plants. A valid technology development strategy would be to obtain effective data that can be used for fieldwork. Such data can be produced by estimating solar irradiation very accurately with several-hundred-meter resolution using Communication, Ocean, and Meteorological Satellites (COMS) and next-generation GEO-KOMPSAT 2A, developing core technologies for short- and medium-term irradiation prediction, and developing technologies for estimating the solar PV potential.

세계적으로 자국의 에너지 수급의 안정성을 도모함과 동시에 태양광 발전시스템의 효율적인 운영을 위한 위성기반 태양광 발전가능량 산출기술 개발이 중요한 관심사로 주목받고 있다. 본 연구는 위성기반 일사량 산출기술과 태양광 발전가능량 산출기술에 대한 동향을 분석하고 관련기술 개발 전략을 제시하는데 그 목적을 둔다. 동향 분석 결과, 우리나라의 태양광 발전가능량 산출에 대한 전반적인 기술 수준은 선진국 대비 30% 이하로 아주 미미한 수준이며 이는 태양광 자원지도 제작에 국한되어있다. 이러한 기술 수준을 단시간 내에 선진국과 대등하게 끌어올리는 것은 거의 불가능할 것이다. 따라서 집중적인 연구개발을 통해 선진국 대비 80% 수준의 기술 수준을 달성하여 주요한 정보를 제공하여야 만이 실제 현업에서의 태양광 발전소 운영에 기여할 수 있을 것이다. 즉 가능한 빠른 시간 내에 현재 운영되고 있는 COMS 뿐만 아니라 차세대 고해상도 정지궤도기상위성 자료를 이용한 수백 m 급 고정밀 일사량 상세화 기술과 단기 또는 중기 일사량 예측을 위한 핵심기술이 우선적으로 확보되어야하며, 이후 위성기반 태양광 발전가능량 산출기술을 개발함으로써 현업에서 활용될 수 있는 정보를 제공함이 현실적으로 타당한 기술개발 전략일 것이다.

Keywords

References

  1. Escobar, R.A., C. Cortes, A. Pino, E.B. Pereira, F.R. Martins, and J.M. Cardemil, 2014. Solar energy resource assessment in Chile: Satellite estimation and ground station measurements. Renewable Energy, 71: 324-332. https://doi.org/10.1016/j.renene.2014.05.013
  2. Escobar, R.A., C. Cortes, A. Pino, M. Salgado, E.B. Pereira, F.R. Martins, J. Boland, and J.M. Cardemil, 2015. Estimating the potential for solar energy utilization in Chile by satellitederived data and ground station measurements. Solar Energy, 121: 139-151. https://doi.org/10.1016/j.solener.2015.08.034
  3. Janjai, S., J. Laksanaboonsong, M. Nunez, and A. Thongsathitya, 2005. Development of a method for generating operational solar radiation maps from satellite data for a tropical environment. Solar Energy, 78(6): 739-751. https://doi.org/10.1016/j.solener.2004.09.009
  4. Letendre, S., M. Makhyoun, and M. Taylor, 2014. Predicting solar power production: irradiance forecasting models, applications and future prospects. Solar Electric Power Association, Washington, DC.
  5. Martins, F.R., E.B. Pereira, and S.L. Abreu, 2007. Satellite-derived solar resource maps for Brazil under SWERA project. Solar Energy, 81: 517-528. https://doi.org/10.1016/j.solener.2006.07.009
  6. Mueller, R.W., K.F. Dagestad, P. Ineichen, M. Schroedter-Homscheidt, S. Cros, D. Dumortier, R. Kuhlemann, J.A. Olseth, G. Piernavieja, and C. Reise, 2004. Rethinking satellite-based solar irradiance modelling: the SOLIS clear-sky module. Remote sensing of Environment, 91: 160-174. https://doi.org/10.1016/j.rse.2004.02.009
  7. Pelland, S., J. Remund, J. Kleissl, T. Oozeki, and K. De Brabandere, 2013. Photovoltaic and solar forecasting: state of the art. IEA PVPS Task 14: 1-36
  8. Perez, R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and F. Vignola, 2002. A new operational model for satellite-derived irradiances: description and validation. Solar Energy, 73: 307-317. https://doi.org/10.1016/S0038-092X(02)00122-6
  9. Perez, R., S. Kivalov, J. Schlemmer, K. Hemker, D. Renne, and T.E. Hoff, 2010. Validation of short and medium term operational solar radiation forecasts in the US. Solar Energy, 84(12): 2161-2172. https://doi.org/10.1016/j.solener.2010.08.014
  10. Polo, J., L. Martin, and M. Cony, 2012. Revision of ground albedo estimation in Heliosat scheme for deriving solar radiation from SEVIRI HRV channel of Meteosat satellite. Solar Energy, 86: 275-282. https://doi.org/10.1016/j.solener.2011.09.030
  11. Polo, J., S. Wilbert, J.A. Ruiz-Arias, R. Meyer, C. Gueymard, M. Suri, L. Martin, T. Mieslinger, P. Blanc, I. Grant, J. Boland, P. Ineichen, J. Remund, R. Escobar, A. Troccoli, M. Sengupta, K.P. Nielsen, D. Renne, N. Geuder, and T. Cebecauer, 2016. Preliminary survey on siteadaptation techniques for satellite-derived and reanalysis solar radiation datasets. Solar Energy, 132: 25-37. https://doi.org/10.1016/j.solener.2016.03.001
  12. Rigollier, C., M. Lefevre, and L. Wald, 2004. The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy, 77: 159-169. https://doi.org/10.1016/j.solener.2004.04.017
  13. Schillings, C., H. Mannstein, and R. Meyer, 2004. Operational method for deriving high resolution direct normal irradiance from satellite data. Solar Energy, 76: 475-484. https://doi.org/10.1016/j.solener.2003.07.038
  14. Sengupta, M., A. Habte, S. Kurtz, A. Dobos, S. Wilbert, E. Lorenz, T. Stoffel, D. Renne, C. Gueymard, D. Myers, S. Wilcox, P. Blanc, and R. Perez 2015. Best practices handbook for the collection and use of solar resource data for solar energy applications. National Renewable Energy Laboratory, Golden, CO.
  15. Zarzalejo, L.F., J. Polo, L. Martin, L. Ramirez, and B. Espinar, 2009. A new statistical approach for deriving global solar radiation from satellite images. Solar Energy, 83(4): 480-484. https://doi.org/10.1016/j.solener.2008.09.006
  16. Zervos, A., 2016. Renewables 2016 Global Status Report. REN 21 Secretariat, Paris, France.

Cited by

  1. UAV 공간정보 기반의 태양광발전소 부지의 일사량 분석 vol.48, pp.1, 2016, https://doi.org/10.22640/lxsiri.2018.48.1.5
  2. 다목적실용위성 영상자료 활용 현황 vol.34, pp.6, 2016, https://doi.org/10.7780/kjrs.2018.34.6.3.1