DOI QR코드

DOI QR Code

An User-Friendly Method of Image Warping for Traffic Monitoring System

실시간 교통상황 모니터링 시스템을 위한 유저 친화적인 영상 변형 방법

  • Yi, Chuho (ADAS Business Department, LG Electronics) ;
  • Cho, Jungwon (Department of Computer Education, Jeju National University)
  • Received : 2016.11.02
  • Accepted : 2016.12.20
  • Published : 2016.12.28

Abstract

Currently, a traffic monitoring service using a surveillance camera is provided through internet. In general, if the user points a certain location on a map, then this service shows the real-time image of the camera where it is mounted. In this paper, we proposed the intuitive surveillance monitoring system which displays a real-time camera image on the map by warping with bird's-eye view and with the top of image as the north. In order to robustly estimate the road plane using camera image, we used the motion vectors which can be detected to changes in brightness. We applied a re-adjustment process to have the same directivity with a map and presented a user-friendly interface that can be displayed on the map. In the experiment, the proposed method was presented as the result of warping image that the user can easily perceive like a map.

현재 인터넷으로 감시 카메라를 이용하여 교통량을 보여주는 서비스가 제공되고 있으나, 일반적으로 사용자가 지도 위의 일정 위치를 지정하면 카메라가 장착되어 있는 기준으로 영상을 보여준다. 본 논문에서는 상단이 북쪽으로 표시되는 일반적인 지도에 현재 카메라에서 촬영되고 있는 도로의 영상을 지도 기준으로 위에서 바라보는 시점(Bird's-eye view)으로 변형(Warping)하여 보여줌으로써 사용자가 직관적으로 현재의 도로 상황을 한눈에 볼 수 있는 시스템을 제안하였다. 본 논문에서는 카메라 영상에서 보여주고 있는 도로 평면을 강인하게 추정하기 위해 밝기 변화에 강인할 수 있는 움직임 벡터를 이용하여 도로 평면을 추정하는 방법을 제안하며, 지도와 같은 방향성을 가질 수 있도록 재조정하는 과정을 적용하고 지도 위에 표시할 수 있는 사용자 친화적인 인터페이스를 제시하였다. 실험결과를 통해 본 논문에서 제안하는 방법이 지도와 같이 사용자가 인지하기 편리한 영상으로 변형되는 결과를 확인하였다.

Keywords

References

  1. B. Chung and W. Na, "A Study on the Smart Fire Detection System using the Wireless Communication," Journal of IT Convergence Society for SMB, Vol.6, No.3, pp.37-41, 2016
  2. M. Choi, "Mobile Monitoring System for Large Scale Scientific Computing Center," Journal of IT Convergence Society for SMB, Vol.4, No.1, pp.41-50, 2012
  3. B. Kang and K. Lee, "Fire Alarm Solutions Through the Convergence of Image Processing Technology and M2M," Journal of the Korea Convergence Society, Vol. 7. No. 1, pp. 37-42, 2016 https://doi.org/10.15207/JKCS.2016.7.1.037
  4. T. Yoo and S. Lee, "Generation Method of Depth Map based on Vanishing Line using Gabor Filter," Journal of the Korea Convergence Society, Vol. 3. No. 1, pp. 13-17, 2012
  5. http://map.naver.com/
  6. S. Baker, D. Scharstein, J. Lewis. and et al., "A database and evaluation methodology for optical flow," International Journal of Computer Vision, 92(1), pp. 1-31, 2011. https://doi.org/10.1007/s11263-010-0390-2
  7. H.-H. Han, G.-S. Lee, and S.-H. Lee, "2D/3D image Conversion Method using Simplification of Level and Reduction of Noise for Optical Flow and Information of Edge," Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 2. pp. 827-833, 2012. https://doi.org/10.5762/KAIS.2012.13.2.827
  8. P. Torr and A. Zisserman, "MLESAC: A new robust estimator with application to estimating image geometry," Journal of Computer Vision and Image Understanding 78, no. 1, pp. 138-156, 2000. https://doi.org/10.1006/cviu.1999.0832
  9. R. Hartley and A. Zisserman, Multiple View Geometry, Oxford, 2004.
  10. G. Y. Kim and S. M. Son, "Realistic 3D model generation of a real product based on 2D-3D registration," Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 11, pp. 5385-5391, 2013. https://doi.org/10.5762/KAIS.2013.14.11.5385
  11. G. Wolberg, Digital Image Warping, IEEE Computer Society Press, 1990.
  12. H.-J. Lee and N.-Y. Kwak, "A Study on Performance Analysis of Image Interpolation Filters for Field-based Warping and Morphing," Journal of the Korea Academia-Industrial cooperation Society, Vol. 5, No. 6. pp. 504-510, 2004.
  13. Bentley, J. Louis, and M. Shamos, "Divide-andconquer in multidimensional space," Proceedings of the eighth annual ACM symposium on Theory of computing, 1976.
  14. S.-W. Jang, H.-J. Choi, and M.-H. Huh, "Segmentation of Target Objects Based on Feature Clustering in Stereoscopic Images," Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 10, pp. 4807-4813, 2012. https://doi.org/10.5762/KAIS.2012.13.10.4807
  15. M. Armstrong, A. Zisserman , and P. Beardsley, "Euclidean reconstruction from uncalibrated images," In Proc. British Machine Vision Conference, 1994.
  16. S.-W. Jang and M.-H. Huh, "Target Object Detection Based on Robust Feature Extraction," Journal of the Korea Academia-Industrial cooperation Society, Vol. 15, No. 12, pp. 7302-7308, 2014. https://doi.org/10.5762/KAIS.2014.15.12.7302