Acknowledgement
Supported by : 정보통신기술진흥센터, 한국연구재단
References
- N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell, A Survey of Mobile Phone Sensing, IEEE Communications Magazine, Vol. 48, No. 9, pp. 140-150, 2010.
- Simon Haykin, Neural Networks and Learning Machine, Prentice Hall, 2009.
- D. Barber, T. Cemgil, and S. Chiappa, Bayesian Time Series Models, Cambridge University Press, 2011.
-
S. Shalev-Shwartz, Online Learning and Online Convex Optimization, Foundations and
$Trends^{(R)}$ in Machine Learning, Vol. 4, No. 2, pp. 107-194, 2012. - G. Widmer and M. Kurat, Learning in the Presence of Concept Drift and Hidden Contexts, Machine Learning, Vol. 23, pp. 69-101, 1996.
- I. Zliobaite, Learning under Concept Drift: an Overview, Technical Report, Faculty of Mathematics and Informatics, Vilnius University, 2009.
- Y. LeCun, L. Bottou, Y. Bengio, & P. Haffner, Gradient-based learning applied to document recognition, Proc, of the IEEE, 86(11), 2278-2324, 1998. https://doi.org/10.1109/5.726791
- Lee, Honglak, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, Proc. of the 26th Annual International Conference on Machine Learning (ICML), 2009.
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks, The Twenty-sixth Annual Conference on neural information processing systems (NIPS 2012), 2012.
- J. Masci, et al. Stacked convolutional auto-encoders for hierarchical feature extraction, Artificial Neural Networks and Machine Learning (ICANN 2011), 52-59, Springer Berlin Heidelberg, 2011.
- A. Makhzani and B. Frey, k-Sparse Autoencoders, Proc. of the 2nd International Conference on Learning Representations (ICLR 2014), 2014.
- A. Makhzani and B. Frey, Winner-Take-All Autoencoders, The Twenty-ninth Annual Conference on neural information processing systems (NIPS 2015), 2015.
- M.-O. Heo, M. Kang, B.-K. Lim, K.-B. Hwang, Y.-T., Park, and B.-T. Zhang, Real-time route inference and learning for smartphone users using probabilistic graphical models, Journal of the Korea Information Science Society: Software and Applications, 39(6):425-435, 2012.