References
- M. Chandel and E. Williams, "Synthetic Natural Gas (SNG): Technology, Environmental Implications, and Economics", Climate Change Policy Partnership, 2009.
- S.H. Kang, J.H. Ryu, S.H. Kim, J.H. Kim, H.S. Kim, K.J. Jeong, J.E. Lee, Y.D. Yoo, and D.J. Koh, "Recent Trends in Production Technology for Synthetic Natural Gas (SNG) from Coal", Jornal of Energy & Climate Change, Vol. 9, No. 1, 2014, p. 3-18.
- S.I. Park, U.S. Kim, J.H, Chung, J.P. Hong, S.C. Kim and D.J. Cha, "Effect of Hydrogen in SNG on Gas Turbine Combustion Characteristics", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 4, 2012, p. 412-419. https://doi.org/10.7316/KHNES.2012.23.4.412
- S.I. Park, U.S. Kim, M.C. Lee, S.C. Kim and D.G. Cha, "The effects and Characteristics of Hydrogen in SNG on Gas Turbine Combustion using a Diffusion Type Combustor", International Journal of Hydrogen Energy, 38, 2013, p. 12847-12855. https://doi.org/10.1016/j.ijhydene.2013.07.063
-
M.C. Lee, S.I. Park, S.C. Kim, J.S. Yoon, S.P. Joo and Y.B. Yoon "Effect of Low
$H_2$ Content in Natural Gas on the Combustion Characteristics of Gas Turbine", The Korean Society of Combustion, No. 46, 2013, p. 109-110. - I.C. Choi and K.M. Lee, "An Experimental Study on Combustion Instability in Model Gas Turbine Combustor using Simulated SNG Fuel", J. Korean Soc. Combust. 20(1), 2015, p. 32-42. https://doi.org/10.15231/jksc.2015.20.1.032
- J.S. Oh, S.G. Dong, J.B. Yang, "Characteristics of Non-premixed Synthetic Natural Gas-Air Flame with Variation in Fuel Compositions", Trans. Korean Soc. Mech. Eng. B, No. 9, Vol. 37, 2013, p. 829-836. https://doi.org/10.3795/KSME-B.2013.37.9.829
- D.A. Senior, "Burning Velocities of Hydrogen-Air and Hydrogen-Oxygen mixtures : Determination by Burner Method with Schlieren Photography", Combust. Flame, Vol. 5, 1961, p. 7-10. https://doi.org/10.1016/0010-2180(61)90067-0
- N. Bouvet, C. Chauveau, I. Gokalp, S.Y. Lee and R.J. Santoro, "Characterization of Syngas Laminar Flames using the Bunsen Burner Configuration", International Journal of Hydrogen Energy, 36, 2011, p. 992-1005. https://doi.org/10.1016/j.ijhydene.2010.08.147
- A. Van Maaren, D.S. Thung and L.RH. Degoey, "Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures", Combust. Sci. and Tech, Vol. 96, 1994, p. 327-344. https://doi.org/10.1080/00102209408935360
- A.J. Smallbone, W. Liu, C.K. Law, X.Q. You and H. Wang, "Experimental and Modeling Study of Laminar Flame Speed and Non-premixed Counterflow Ignition of n-heptane", Proc. Combust. Inst. 32, 2009, p. 1245-1252. https://doi.org/10.1016/j.proci.2008.06.213
- E. Varea, V. Modica, A. Vandel and B. Renou, "Measurement of Laminar Burning Velocity and Markstein Length Relative to Fresh Gases using a New Postprocessing Procedure : Application to Laminar Spherical Flames for Methane, Ethanol and Isooctane/Air Mixtures", Combust. Flame, 159, 2012, p. 577-590. https://doi.org/10.1016/j.combustflame.2011.09.002
- J. Jayachandran, R. Zhao and F.N. Egolfopoulos, "Determination of Laminar Flame Speeds using Stagnation and Spherically Expanding Flames: Molecular Transport and Radiation Effects", Combust. Flame, 161, 2014, p. 2305-2316. https://doi.org/10.1016/j.combustflame.2014.03.009
- F. Wu, W. Liang, Z. Chen, Y. Ju and C.K. Law, "Uncertainty in Stretch Extrapolation of Laminar Flame Speed from Expanding Spherical Flames", Proc. Combust. Inst. 35, 2015, p. 663-670. https://doi.org/10.1016/j.proci.2014.05.065
- R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller and E.Meeks, "Premix : A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames", Sandia National Laboratories Report, 1985, SAND 85-8240.
- G. Smith, T.Bowman and M. Frenklach, http://me.Berkeley.edu/gri_mech/
- H. Wang, X. You, Ameya V. Josh, S.G. Davis, A. Laskin, F.N. Egolfopoulos and C.K. Law, USC Mech Version II, High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, http://ignis.usc.edu/USC_Mech_II.htm
- "Chemical-Kinetic Mechanisms for Combustion Applications", San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu).
- C.K. Law and F.N. Egolfopoulos, "A Unified Chain-Thermal Theory of Fundamental Flammability Limits", Twenty-Fourth Symposium (International) on Combustion, 1992, p. 137-144.
- T.Tahtouh, F. Halter and C. Mounaim-Rousselle, "Measurement of Laminar Burning Speeds and Markstein Lengths using a Novel Methodology", Combust. Flame, 156, 2009, p. 1735-1743. https://doi.org/10.1016/j.combustflame.2009.03.013
- F. Halter, T.Tahtouh and C. Mounaim-Rousselle, "Nonlinear Effects of Stretch on the Flame front Propagation", Combust. Flame, 157, 2010, p. 1825-1832. https://doi.org/10.1016/j.combustflame.2010.05.013
- A.P. Kelley and C.K. Law, "Nonlinear Effects in the Extraction of Laminar Flame Speeds from Expanding Spherical Flames", Combust. Flame, 156, 2009, p. 1844-1851. https://doi.org/10.1016/j.combustflame.2009.04.004
- D. Bradley, P.H. Gaskell and X.J. Gu, "Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study", Combust. Flame, 104, 1996, p. 176-198. https://doi.org/10.1016/0010-2180(95)00115-8
- Z. Chen, "On the Accuracy of Laminar Flame Speeds Measured from Outwardly Propagating Spherical Flames: Methane/Air at Normal Temperature and Pressure", Combust. Flame, 162, 2015, p. 2442-2453. https://doi.org/10.1016/j.combustflame.2015.02.012