References
-
A. Z. Abdullah and P. Y. Ling, "Heat Treatment Effects on the Characteristics and Sonocatalytic Performance of
$TiO_2$ in the Degradation of Organic Dyes in Aqueous Solution," J. Hazard. Mater., 173 [1-3] 159-67 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.060 - M. Inoue, F. Okada, A. Sakurai, and M. Sakakibara, "A New Development of Dyestuffs Degradation System Using Ultrasound," Ultrason. Sonochem., 13 [4] 313-20 (2006). https://doi.org/10.1016/j.ultsonch.2005.05.003
- L. Zhu and W. C. Oh, "Review for Semiconductor/Reduced Graphene Oxide Nanocomposites: Fabrication, Characterization and Application for Decontamination of Organic Dyes," J. Multifunct. Mater. Photosci., 5 [2] 153-70 (2014).
-
K. Hashimoto, H. Irie, and A. Fujishima, "
$TiO_2$ Photocatalysis: a Historical Overview and Future Prospects," Jpn. J. Appl. Phys., 44 [12] 8269-85 (2005). https://doi.org/10.1143/JJAP.44.8269 -
A. L. Linsebigler, G. Q. Lu, and J. T. Yates, "Photocatalysis on
$TiO_2$ Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., 95 [3] 735-58 (1995). https://doi.org/10.1021/cr00035a013 -
W. H. Dong, F. Pan, L. L. Xu, M. R. Zheng, C. H. Sow, K. Wu, G. Q. Xu, W. Chen, "Facile Synthesis of CdS@
$TiO_2$ Core-Shell Nanorods with Controllable Shell Thickness and Enhanced Photocatalytic Activity under Visible Light Irradiation," Appl. Sur. Sci., 349 279-86 (2015). https://doi.org/10.1016/j.apsusc.2015.04.207 -
X. L. Zhang, Y. H. Tang, Y. Li, Y. Wang, X. N. Liu, C. B. Liu, and S. L. Luo, "Reduced Graphene Oxide and PbS Nanoparticles Co-Modified
$TiO_2$ Nanotube Arrays as a Recyclable and Stable Photocatalyst for Efficient Degradation of Pentachlorophenol," Appl. Catal. A: Gen., 457 78-84 (2013). https://doi.org/10.1016/j.apcata.2013.03.011 -
Q. Shen, D. Arae, and T. Toyoda, "Photosensitization of Nanostructured
$TiO_2$ with CdSe Quantum Dots: Effects of Microstructure and Electron Transport in$TiO_2$ Substrates," J. Photochem. Photobiol. A, 164 [1-3] 75-80 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.027 -
I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, "Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic
$TiO_2$ Films," J. Am. Chem. Soc., 128 [7] 2385-93 (2006). https://doi.org/10.1021/ja056494n - O. Rabin, J. M. Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, "An X-ray Computed Tomography Imaging Agent Based on Long-Circulating Bismuth Sulphide Nanoparticles," Nat. Mater., 5 118-22 (2006). https://doi.org/10.1038/nmat1571
-
H. Yu, J. Huang, H. Zhang, Q. Zhao, and X. Zhong, "Nanostructure and Charge Transfer in
$Bi_2S_3$ -$TiO_2$ Heterostructures," Nanotechnology, 25 [21] 215702 (2014). https://doi.org/10.1088/0957-4484/25/21/215702 -
Y. Bessekhouad, D. Robert, and J. V. Weber, "
$Bi_2S_3$ /$TiO_2$ and CdS/$TiO_2$ Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant," J. Photochem. Photobio. A, 163 [3] 569-80 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.006 - M. Salavati-Niasari, G. Hosseinzadeh, and F. Davar, "Synthesis of Lanthanum Carbonate Nanoparticles via Sonochemical Method for Preparation of Lanthanum Hydroxide and Lanthanum Oxide Nanoparticles," J. Alloy Compd., 509 [1] 134-40 (2011). https://doi.org/10.1016/j.jallcom.2010.09.006
- M. Esmaeili-Zare, M. Salavati-Niasari, and A. Sobhani, "Simple Sonochemical Synthesis and Characterization of HgSe Nanoparticles," Ultrason. Sonochem., 19 [5] 1079-86 (2012). https://doi.org/10.1016/j.ultsonch.2012.01.013
- H. Wang, J. J. Zhu, J. M. Zhu, and H. Y. Chen, "Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods," J. Phys. Chem. B, 106 [15] 3848-54 (2002). https://doi.org/10.1021/jp0135003
-
J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong, and B. X. Wang, "Detection and Analysis of Reactive Oxygen Species (ROS) Generated by Nano-Sized
$TiO_2$ Powder under Ultrasonic Irradiation and Application in Sonocatalytic Degradation of Organic Dyes," Ultrason. Sonochem., 18 [1] 177-83 (2011). https://doi.org/10.1016/j.ultsonch.2010.05.002 -
L. Zhu, G. Trisha, C. Y. Park, Z. D. Meng, and W. C. Oh, "Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-
$TiO_2$ Composites Synthesized by an Ultrasonic-Assisted Method," Chin. J. Catal., 33 [7-8] 1276-83 (2012). https://doi.org/10.1016/S1872-2067(11)60430-0 -
M. E. Simonsen, Z. S. Li, and E. G. Sogaard, "Influence of the OH Groups on the Photocatalytic Activity and Photoinduced Hydrophilicity of Microwave Assisted Sol-Gel
$TiO_2$ Film," Appl. Surf. Sci., 255 8054-62 (2009). https://doi.org/10.1016/j.apsusc.2009.05.013 -
Y. Y. Zhao, K. Ting, E. Chua, C. K. Gan, J. Zhang, B. Peng, Z. P. Peng, and Q. H. Xiong, "Phonons in
$Bi_2S_3$ Nanostructures: Raman Scattering and First-Principles Studies," Phys. Rev. B, 84 [20] 205330 (2011). https://doi.org/10.1103/PhysRevB.84.205330 -
X. W. Zhang, M. H. Zhou, and L. C. Lei, "Preparation of Photocatalytic
$TiO_2$ Coatings of Nanosized Particles on Activated Carbon by AP-MOCVD," Carbon, 43 [8] 1700-8 (2005). - D. W. Kim, D. S. Kim, Y. G Kim, Y. C. Kim, and S. G. Oh, "Preparation of Hard Agglomerates Free and Weakly Agglomerated Antimony Doped Tin Oxide (ATO) Nanoparticles by Coprecipitation Reaction in Methanol Reaction Medium," Mater. Chem. Phys., 97 452-57 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.046
-
K. K. Akurati, A. Vital, J. P. Dellemann, K. M. Michalow, D. Ferri, T. Graule, and A. Baiker, "Flame-Made
$WO_3$ /$TiO_2$ Nanoparticles: Relation between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B: Environ., 79 [1] 53-62 (2008). https://doi.org/10.1016/j.apcatb.2007.09.036 -
L. Zhu, S. B. Jo, S. Ye, K. Ullah, Z. D. Meng, and W. C. Oh, "A Green and Direct Synthesis of Photosensitized
$CoS_2$ -Graphene/$TiO_2$ Hybrid with High Photocatalytic Performance," J. Ind. Eng. Chem., 22 264-71 (2015). https://doi.org/10.1016/j.jiec.2014.07.019 -
L. Zhu, Z. D. Meng, and W. C. Oh, "MWCNT-Based
$Ag_2S$ -$TiO_2$ Nanocomposites Photocatalyst: Ultrasound-Assisted Synthesis, Characterization, and Enhanced Catalytic Efficiency," J. Nanomater., 2012 1-10 (2012). -
P. Pusit, K. Suchanya, P. Ratchadaporn, S. Supaporn, and P. Sukon, "Preparation and Characterization of
$BiVO_4$ Powder by the Sol-Gel Method," Ferroelectrics., 456 45-54 (2013). https://doi.org/10.1080/00150193.2013.846197 - K. John, D. T. Manolis, D. P. George, N. A. Mariza, S. T. Kostas, G. Sofia, B. Kyriakos, K. Christos, O. Michael, and L. Alexis, "Highly Active Catalysts for the Photooxidation of Organic Compounds by Deposition of [60] Fullerene onto the MCM-41 Surface: A Green Approach for the Synthesis of Fine Chemicals," Appl. Catal., B, 117-118 36-48 (2012). https://doi.org/10.1016/j.apcatb.2011.12.024
-
Z. D. Meng, L. Zhu, K. Ullah, S. Ye, and W.C. Oh, "Detection of Oxygen Species Generated by
$WO_3$ Modification Fullerene/$TiO_2$ in the Degradation of 1,5-diphenyl Carbazide," Mater. Res. Bull., 56 45-53 (2014). https://doi.org/10.1016/j.materresbull.2014.04.033 -
X. D. Yu, Q. Y. Wu, S. C. Jiang, and Y. H. Guo, "Nanoscale ZnS/
$TiO_2$ Composites: Preparation, Characterization, and Visible-Light Photocatalytic Activity," Mater. Charact., 57 [4-5] 333-41 (2006). https://doi.org/10.1016/j.matchar.2006.02.011 -
F. J. Zhang, J. Liu, M. L. Chen, and W. C. Oh, "Photo-Electrocatalytic Degradation of Dyes in Aqueous Solution Using CNT/
$TiO_2$ Electrode," J. Korean Ceram. Soc., 46 [3] 263-70 (2009). https://doi.org/10.4191/KCERS.2009.46.3.263 -
H. Li, B. Zhu, Y. Feng, S. Wang, S. Zhang, and W. Huang, "Synthesis, Characterization of
$TiO_2$ Nanotubes-Supported MS ($TiO_2$ NTs@MS, M=Cd, Zn) and their Photocatalytic Activity," J. Solid. State. Chem., 180 [7] 2136-42 (2007). https://doi.org/10.1016/j.jssc.2007.05.013 -
Y. Xie, S. H. Heo, Y. N. Kim, S. H. Yoo, and S. O. Cho, "Improved Conversion Efficiency of CdS Quantum Dots-Sensitized
$TiO_2$ Nanotube Array Using ZnO Energy Barrier Layer," Nanotechnology, 22 [1] 015702 (2010). https://doi.org/10.1088/0957-4484/22/1/015702 - O. K. Dalrymple, E. Stefanakos, M. A. Trotz, and D. Y. Goswami, "A Review of the Mechanisms and Modeling of Photocatalytic Disinfection," Appl. Catal. B: Environ., 98 [1-2] 27-38 (2010). https://doi.org/10.1016/j.apcatb.2010.05.001
Cited by
- Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response vol.53, pp.4, 2016, https://doi.org/10.4191/kcers.2016.53.4.393
- Synthesis and Characterization of TiO2/CuS Nanocomposite Fibers as a Visible Light-Driven Photocatalyst vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.05