DOI QR코드

DOI QR Code

Optimization of Crystallization Condition for Transparent LAS Glass-ceramic Via Differential Thermal Analysis

DTA를 통한 LAS계 투명 결정화 유리의 결정화 조건 최적화

  • Moon, Yun-Gon (Optic & Display Materials Team, Korea institute of Ceramic Engineering & Technology) ;
  • Lim, Tae-Young (Optic & Display Materials Team, Korea institute of Ceramic Engineering & Technology) ;
  • Lee, Mijai (Optic & Display Materials Team, Korea institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Optic & Display Materials Team, Korea institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Optic & Display Materials Team, Korea institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Optic & Display Materials Team, Korea institute of Ceramic Engineering & Technology)
  • 문윤곤 (한국세라믹기술원 광디스플레이소재팀) ;
  • 임태영 (한국세라믹기술원 광디스플레이소재팀) ;
  • 이미재 (한국세라믹기술원 광디스플레이소재팀) ;
  • 김진호 (한국세라믹기술원 광디스플레이소재팀) ;
  • 전대우 (한국세라믹기술원 광디스플레이소재팀) ;
  • 황종희 (한국세라믹기술원 광디스플레이소재팀)
  • Received : 2015.10.27
  • Accepted : 2016.01.24
  • Published : 2016.02.01

Abstract

The basic characteristics of glass are highly fragile and brittle consequences the ultimate purpose of glass manufacturing is to make a transparent glass with complex shape. In order to solve this problem, mechanical properties of glass can be increased by crystallization of its amorphous glass. However, glass-ceramics has become opaque through crystallization process due to the distracted interface of glass by precipitated particles. This study has been investigated thermal processing conditions of LAS transparent glass-ceramic by using DTA (differential thermal analysis), in order to control size of precipitated particle and then fabricate transparent glass-ceramic. DTA indicated that crystallization peak area was declined with increased nucleation temperature. Subsequently, we have been established optimum temperature for crystallization depending on the nucleation temperature. The transmission and thermal expansion were measured after crystallization, and the size of precipitated particle was identified in range of 20~100 nm by FE-SEM. In addition, by setting the optimized crystallization condition, with high transmission and low thermal expansion glass was synthesized through this experiment.

Keywords

References

  1. L. B. Kong, Y. Z. Huang, W. X. Que, T. S. Zhang, S. Li, J. Zhang, Z. L. Dong, and D. Y. Tang, Transparent ceramics (Topics in mining, Metallurgy and Materials engineering, Switzerland, 2015) p. 29.
  2. G. H. Beall, D. A. Duke, J. Mater. Sci., 4, 340 (1969) [DOI: http://dx.doi.org/10.1007/BF00550404]
  3. A. R. Boccaccini and D. D. Silva, Recent Patents on Materials Science., 1, 56 (2008). [DOI: http://dx.doi.org/10.2174/1874464810801010056]
  4. W. Holand and G. Beall, Glass-Ceramic Technology, 2nd ed., (John Wiley & Sons, Inc., Hoboken, INC, Canada, 2002) p. 92.
  5. W. Ostertag, G. R Fischer, J. P. Williams, J. Am. Ceram. Soc., 51, 651 (1968). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1968.tb12638.x]
  6. M. Dressler, B. Rudinger, J. Deubener, J. Am. Ceram. Soc., 94, 1421 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2010.04252.x]
  7. C. S. Ray, D. E. Day, J. Am. Ceram. Soc., 73, 439 (1990). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb06532.x]
  8. Chandra s. Ray, Delvert E. Day, J. Am. Ceram. Soc., 80, 3100 (1997). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1997.tb03238.x]
  9. A. Ozturk, Int. J. Microstructure and Materials Properties, 3, 780 (2008). [DOI: http://dx.doi.org/10.1504/IJMMP.2008.022614]
  10. C. M. Kim, H. B. Lim, Y. S. Kim, S. H. Kim, K. S. Oh, and C. Y. Kim, J. Kor. Ceram. Soc., 48, 269 (2011). [DOI: http://dx.doi.org/10.4191/KCERS.2011.48.4.269]
  11. M. C. Weinberg, J. Am. Ceram. Soc., 74, 1905 (1991). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1991.tb07807.x]
  12. C. S. Ray, X. Fang, D. E. Day, J. Am. Ceram. Soc., 83, 865 (2000). [DOI: http://dx.doi.org/10.1111/j.1151-2916.2000.tb01287.x]