DOI QR코드

DOI QR Code

Physical Properties Evaluation of Porous Concrete according to Target Porosity and Pumice Contents Ratio for Application of the Aquatic Environment

수계환경 적용을 위한 설계공극률 및 부석 혼입률에 따른 포러스콘크리트의 물리적 특성 평가

  • Kim, Woo-Suk (School of Architecture, Kumoh National Institute of Technology) ;
  • Park, Jae-Roh (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Bong-Kyun (Dong San BIO Concrete Industry Laboratory, Dong San Concrete Industry Company) ;
  • Seo, Dae-Seuk (Dong San BIO Concrete Industry Laboratory, Dong San Concrete Industry Company) ;
  • Park, Jun-Seok (School of Architecture & Civil Engineering, Kyungpook National University)
  • 김우석 (금오공과대학교 건축학부) ;
  • 박재로 (한국건설기술연구원 환경플랜트연구소) ;
  • 김봉균 (동산콘크리트산업(주) 동산BIO콘크리트연구소) ;
  • 서대석 (동산콘크리트산업(주) 동산BIO콘크리트연구소) ;
  • 박준석 (경북대학교 건설환경에너지공학부)
  • Received : 2016.07.28
  • Accepted : 2016.11.07
  • Published : 2016.12.30

Abstract

The present study is mainly aimed at securing adequate pores which are applicable to the aquatic environment and satisfying the required strength of porous concrete as a structure by substituting pumice for crushed stone which is usually used for the fabrication of porous concrete. Accordingly, in order to deduce the optimum mixing conditions applicable to the aquatic environment, we sought to evaluate the porosity, coefficient of permeability and compressive strength of porous concrete based on the target porosity and the mixing factors for pumice. By examining the porosity and coefficient of permeability of porous concrete and the physical properties of its compressive strength based on the target porosity and the mixing factors for pumice, it is judged that the optimum mixtures for porous concrete applicable to the aquatic environment which satisfy both the necessity of securing adequate pores and the required strength for porous concrete as a structure are PC I I-10-0, PC I I-10-5 and PC I I-10-10.

본 연구는 포러스콘크리트 제조시 사용되는 부순돌 대신 부석을 치환하여 수계환경에 적용이 가능한 적정 공극의 확보와 구조체로서의 소요강도를 만족시키기 위한 것이 주목적 이다. 이에 수계환경에 적용이 가능한 최적배합조건을 도출하기 위하여 설계공극률 및 부석의 배합요인에 따른 포러스콘크리트의 공극률 및 투수계수, 압축강도를 평가하고자 하였다. 공극률 및 투수계수의 시험결과, 부석을 혼입하지 않은 경우 골재입도와 관계없이 설계공극률에 비하여 실측공극률 및 투수계수가 비슷한 감소율을 나타내었다. 또한 골재입도 5~3 mm, 설계공극률 5%에서는 0.05 cm/sec이하의 낮은 투수계수를 나타내어 연속공극이 제대로 형성되지 않는 것으로 판단된다. 압축강도의 시험결과, 하천설계기준 및 하천설계실무요령, 한국콘크리트공업협동조합연합회의 수계환경에 적용이 가능한 콘크리트 기준으로 본 연구에서 적용이 가능한 배합은 PC I-5-0, PC I-5-5, PC I-5-10, PC I-5-15, PC I-10-0, PC I-10-5, PC I-10-10로 나타내었다. 이와 같이 설계공극률 및 부석의 배합요인에 따른 포러스콘크리트의 공극률 및 투수계수, 압축강도의 물리적 특성에 대한 검토를 통하여 수계환경에 적용시 적정 공극의 확보와 구조체로서의 소요강도를 동시에 만족시키는 최적 배합은 PC I-10-0, PC I-10-5, PC I-10-10로 판단된다.

Keywords

References

  1. Tamai, M., Mizuguchi, H., Hatanaka, S., Katahira, H., Nakazawa, T., Yanagibashi, K., and Kunieda, M., Design. Construction and Recent Applications of Porous Concrete in Japan. In: Proceedings of the JCI Symposium on Design. Construction and Recent Applications of Porous Concrete, JCI. Tokyo, 2004, pp. 1-10.
  2. Monters, F., Pervious Concrete: Characterization of Fundamental Properties and Simulation of Microstructure. PhD dissertation, University of South Carolina, 2006.
  3. Wang, W., Study of Pervious Concrete Strength, Sci Technol Build Mater China, Vol. 6, No. 3, 1997, pp. 25-28.
  4. Aamer Rafique Bhutta, M., Tsuruta, K., and Mirza, J., "Evaluation of High-Performance Porous Concrete Properties", Constr Build Mater, Vol. 31, 2012, pp. 67-73. https://doi.org/10.1016/j.conbuildmat.2011.12.024
  5. Kim, M. H., Baik, Y. K., Kang, S. P., Kim, Y. R., and Kim, J. H., "Fundamental Properties of Porous Concrete According to the Sizes of Aggregate", Journal of the Korea Concrete Institute, Vol. 13, No. 5, 2001, pp. 438-446. https://doi.org/10.22636/JKCI.2001.13.5.438
  6. Branson, P. G., Fredrick, P. H., and Robert, P. G., "Algea Attachment on Carbonated Cements in Fresh and Brackish Waters-Preliminary Result", Eco. Eng., Vol. 20, No. 4, 2003, pp. 309-319. https://doi.org/10.1016/S0925-8574(03)00026-0
  7. Yasunary, T., Rie, S., Kazuhiko, M., and Hajime, U., "Estimation of Self Purification Capacity of Biofilm Formed in Domestic Sewer Pipes", Biochem. Eng. J., Vol. 31, No. 1, 2006, pp. 96-101. https://doi.org/10.1016/j.bej.2006.05.021
  8. Balapure, K., Bhatt, N., and Madamwar, D., "Mineralization of Reactive Azo Dyes Present in Simulated Textile Waste Water using Down Flow Microaerophilic Fixed Film Bioreactor", Bioresour. Technol., Vol. 175, 2015, pp. 1-7. https://doi.org/10.1016/j.biortech.2014.10.040
  9. Ebrahimi, S. H., and Borghei, M., "Formaldehyde Biodegradation using an Immobilized Bed Aerobic Bioreactor with Pumice Stone as a Support", Sci. iranica, Vol. 18, No. 6, 2011, pp. 1372-1376. https://doi.org/10.1016/j.scient.2011.01.001
  10. Joerdening, H. J., Hausmann, K., and Demuth, B., "Use of Immobilised Bacteria for the Wastewater Treatment-Examples from the Sugar Industry", Water Sci. Technol., Vol. 53, No. 3, 2005, pp. 9-15. https://doi.org/10.2166/wst.2006.071
  11. Kasikara Pazarlioglu, N., Ozturk, R., and Ergun, F., "Biodecolourization of Direct Blue 15 by Immobilized Phancerochaete Chrysosporium, Process Biochem", Vol. 40, No. 5, 2005, pp. 1923-1929. https://doi.org/10.1016/j.procbio.2004.07.005
  12. Borghei, S. M., Sharbatmaleki, M., Pourrezaie, P., and Borghei, G., "Kinetics of Organic Removal in Fixed-Bed Aerobic Biological Reactor", Bioresour. Technol., Vol. 99, No. 5, 2008, pp. 1118-1124. https://doi.org/10.1016/j.biortech.2007.02.037
  13. Ebrahimi, S. H., and Borghei, M., "Formaldehyde Biodegradation using an Immobilized Bed Aerobic Bioreactor with Pumice Stone as a Support", Sci. iranica, Vol. 18, No. 6, 2011, pp. 1372-1376. https://doi.org/10.1016/j.scient.2011.01.001
  14. Salehizadeh, H., and Shojaosadati, S. A., "Removal of Metal Ions from Aqueous Solution by Polysaccharide Produced from Bacillus Firmus", Water Research., Vol. 37, No. 17, 2003, pp. 4231-4235. https://doi.org/10.1016/S0043-1354(03)00418-4
  15. Monteiro, S. M., Clemente, J. J., Henriques, A. O., Gomes, R. J., Carrondo, M. J., and Cunha, A. E., "A Procedure for High-Yield Spore Production by Bacillus Subtilis", Biotechnol. Prog., Vol. 21, No. 4, 2005, pp. 1026-1031. https://doi.org/10.1021/bp050062z
  16. Nilsson, C., Lakshmanan, R., Renman, G., and Rajarao, G. K., "Efficacy of Reactive Mineral-Based Sorbents for Phosphate, Bacteria, Nitrogen and TOC Removal Column Experiment in Recirculation Batch Mode", Water Research., Vol. 47, 2013, pp. 5165-5175. https://doi.org/10.1016/j.watres.2013.05.056
  17. Tun, S. H., Won, C. K., and Lee, M. W., "Cenozoic Volcanic Activity and Petrochemistry of Volcanic Rocks in the Mt. Paektu Area", Journal of the Petrological Society of Korea, Vol. 29, No. 3, 1993, pp. 291-307.
  18. Khandaker, M., and Anwar, H., "Properties of Volcanic Pumice based Cement and Lightweight Concrete", Journal of Cement and Concrete Research, Vol. 34, No. 2, 2004, pp. 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004
  19. Japan Concrete Institute, Establishment of design . construction method of porous concrete on research committee, 2003.
  20. Korean Agency for Technology and Standards, Standard test method for compressive strength of concrete, 2010.
  21. Ministry of Land, River design criteria . explanation, 2009.
  22. Ministry of Land, Design work trick of river conservation work, 2009.
  23. Federation of korea Concrete industry Cooperatives, Revement of concrete and block of retaining wall, 2012.