DOI QR코드

DOI QR Code

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane

나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용

  • Eom, Seong Un (Department of Congno-Mechatronics Engineering, Pusan National University) ;
  • Kang, Seok Hee (Department of Congno-Mechatronics Engineering, Pusan National University) ;
  • Hong, Suck Won (Department of Congno-Mechatronics Engineering, Pusan National University)
  • 엄성운 (부산대학교 인지메카트로닉스공학과) ;
  • 강석희 (부산대학교 인지메카트로닉스공학과) ;
  • 홍석원 (부산대학교 인지메카트로닉스공학과)
  • Received : 2016.07.30
  • Accepted : 2016.10.18
  • Published : 2016.11.27

Abstract

Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Keywords

References

  1. ITRS, "International technology roadmap for semiconductors, LITHOGRAPHY" (2003).
  2. N. H. E. Weste and K. Eshraghian, Principles of CMOS Design, 144, Addison Wesley (1993).
  3. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995). https://doi.org/10.1063/1.114851
  4. S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. Technol. B, 14, 4129 (1996). https://doi.org/10.1116/1.588605
  5. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenvasan, J. Ekertdt and C. G. Willson, Proc. SPIE-Int. Soc. Opt. Eng., 3679, 379 (1999).
  6. S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. Technol. B, 14, 4129, (1996). https://doi.org/10.1116/1.588605
  7. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick and D. J. Willson, J. Microlith. Microfab. Microsyst., 4, 011002 (2005).
  8. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995). https://doi.org/10.1063/1.114851
  9. W. Zhang and S. Y. Chou, Appl. Phys. Lett., 83, 1632 (2003). https://doi.org/10.1063/1.1600505
  10. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Science, 272, 85 (1996). https://doi.org/10.1126/science.272.5258.85
  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  12. A. K. Geim, K. S. Novoselov, Nature Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  13. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  14. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, Nature, 438, 201 (2005). https://doi.org/10.1038/nature04235
  15. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim and H. L. Stormer, Solid State Commun., 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  16. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and A. K. Geim, Phys. Rev. Lett., 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  17. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Nano Lett., 8, 902 (2008). https://doi.org/10.1021/nl0731872
  18. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  19. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  20. M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim, Phys. Rev. Lett., 98, 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805
  21. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo and H. Dai, Phys. Rev. Lett., 100, 20 (2008).
  22. L. Jiao, L. Zhang, L. Ding, J. Liu and H. Dai, Nano Res., 3, 6 (2010).
  23. X. Li, X. Wang, L. Zhang, S. W. Lee and H. Dai, Science, 319, 5867 (2008).
  24. S. H. Kang, W. S. Hwang, Z. Lin, S.-H. Kwon and S. W. Hong, Nano Lett., 15, 7913 (2015). https://doi.org/10.1021/acs.nanolett.5b02946
  25. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, Nature, 457, 706. (2009). https://doi.org/10.1038/nature07719
  26. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009). https://doi.org/10.1021/nl801827v
  27. Han, M. Y., B. Ozyilmaz, Y. Zhang and P. Kim, Phys. Rev. Lett., 98, 206805 (2007). https://doi.org/10.1103/PhysRevLett.98.206805
  28. H.-S. Kim, S. M. Won, Y.-G. Ha, J.-H. Ahn, A. Facchetti, T. J. Marks and J. A. Rogers, Appl. Phys. Lett., 95, 183504 (2009). https://doi.org/10.1063/1.3256223
  29. S. W. Hong, F. Du, W. Lan, S. Kim, H.-S. Kim and J. A. Rogers, Adv. Mater., 23, 3821 (2011).