DOI QR코드

DOI QR Code

High-fat Intake is Associated with Alteration of Peripheral Circadian Clock Gene Expression

고지방식이에 의한 말초 생체시계 유전자 발현 변화

  • Park, Hyun-Ki (Biobehavioral Center, Mo-Im Kim Nursing Research Institute, Yonsei University) ;
  • Park, Jae-Yeo (Biobehavioral Center, Mo-Im Kim Nursing Research Institute, Yonsei University) ;
  • Lee, Hyangkyu (Department of Clinical Nursing, College of Nursing, Yonsei University)
  • 박현기 (연세대학교 간호대학 김모임연구소 생행동연구센터) ;
  • 박재여 (연세대학교 간호대학 김모임연구소 생행동연구센터) ;
  • 이향규 (연세대학교 간호대학 김모임연구소 생행동연구센터)
  • Received : 2016.11.03
  • Accepted : 2016.11.20
  • Published : 2016.11.30

Abstract

Purpose: Recent studies demonstrated disruption of the circadian clock gene is associated with the development of obesity and metabolic syndrome. Obesity is often caused by the high calorie intake, In addition, the chronic stress tends to contribute to the increased risk for obesity. To evaluate the molecular mechanisms, we examined the expression of circadian clock genes in high fat diet-induced mice models with the chronic stress. Methods: C57BL/6J mice were fed with a 45% or 60% high fat diet for 8 weeks. Daily immobilization stress was applied to mice fed with a 45% high fat for 16 weeks. We compared body weight, food consumption, hormone levels and metabolic variables in blood. mRNA expression levels of metabolic and circadian clock genes in both fat and liver were determined by quantitative RT-PCR. Results: The higher fat content induced more severe hyperglycemia, hyperlipidemia and hyperinsulinemia, and these results correlated with their relevant gene expressions in fat and liver tissues. Chronic stress had only minimal effects on metabolic variables, but it altered the expression patterns of metabolic and circadian clock genes. Conclusion: These results suggest that the fat metabolism regulates the function of the circadian clock genes in peripheral tissues, and stress hormones may contribute to its regulation.

Keywords

References

  1. Jang H, Lee G, Kong J, Choi G, Park YJ, Kim JB. Feeding period restriction alters the expression of peripheral circadian rhythm genes without changing body weight in mice. PloS One. 2012;7(11):e49993. doi: 10.1371/journal.pone.0049993 PubMed PMID: 23166806; PubMed Central PMCID: PMC3499481
  2. Husse J, Hintze SC, Eichele G, Lehnert H, Oster H. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption. PloS One. 2012;7(12):e52983. doi: 10.1371/journal.pone.0052983 PubMed PMID: 23285241; PubMed Central PMCID: PMC3532432
  3. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience. 2012;35:445-462. doi: 10.1146/annurev-neuro-060909-153128 PubMed PMID: 22483041; PubMed Central PMCID: PMC3710582.
  4. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043-1045. doi: 10.1126/science.1108750 PubMed PMID: 15845877; PubMed Central PMCID: PMC3764501
  5. Park N, Cheon S, Son GH, Cho S, Kim K. Chronic circadian disturbance by a shortened light-dark cycle increases mortality. Neurobiology of Aging. 2012;33(6):1122 e11-22. doi: 10.1016/j.neurobiolaging.2011.11.005 PubMed PMID: 22154820
  6. Froy O. Circadian rhythms and obesity in mammals. ISRN Obesity. 2012;2012:437198. doi: 10.5402/2012/437198 PubMed PMID: 24527263; PubMed Central PMCID: PMC3914271
  7. Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circulation Research. 2010;106(3):447-462. doi: 10.1161/CIRCRESAHA.109.208355 PubMed PMID: 20167942; PubMed Central PMCID: PMC2837358
  8. Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annual Review of Physiology. 2005;67:259-284. doi: 10.1146/annurev.physiol.67.040403.120816 PubMed PMID: 15709959
  9. Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods in Molecular Biology. 2012;821:421-433. doi: 10.1007/978-1-61779-430-8_27 PubMed PMID: 22125082; PubMed Central PMCID: PMC3807094
  10. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nature Medicine. 2006;12(8):939-944. doi: 10.1038/nm1447 PubMed PMID: 16862152
  11. Lopez-Varela S, Sanchez-Muniz FJ, Cuesta C. Decreased food efficiency ratio, growth retardation and changes in liver fatty acid composition in rats consuming thermally oxidized and polymerized sunflower oil used for frying. Food and Chemical Toxicology. 1995;33(3):181-189. PubMed PMID: 7896227 https://doi.org/10.1016/0278-6915(94)00133-9
  12. Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends in Immunology. 2004;25(1):4-7. PubMed PMID: 14698276 https://doi.org/10.1016/j.it.2003.10.013
  13. Wang X, Xue J, Yang J, Xie M. Timed high-fat diet in the evening affects the hepatic circadian clock and PPARalpha-mediated lipogenic gene expressions in mice. Genes & Nutrition. 2013;8(5):457-463. doi: 10.1007/s12263-013-0333-y PubMed PMID: 23417480; PubMed Central PMCID: PMC3755129
  14. Jou J, Choi SS, Diehl AM. Mechanisms of disease progression in nonalcoholic fatty liver disease. Seminars in Liver Disease. 2008;28(4):370-379. doi: 10.1055/s-0028-1091981 PubMed PMID: 18956293
  15. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. Journal of Clinical Investigation. 2008;118(3):829-838. doi: 10.1172/JCI34275 PubMed PMID: 18317565; PubMed Central PMCID: PMC2254980
  16. Yahagi N, Shimano H, Hasty AH, Matsuzaka T, Ide T, Yoshikawa T, et al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. Journal of Biological Chemistry. 2002;277(22):19353-19357. doi: 10.1074/jbc.M201584200 PubMed PMID: 11923308
  17. Kathirvel E, Morgan K, French SW, Morgan TR. Overexpression of liver-specific cytochrome P4502E1 impairs hepatic insulin signaling in a transgenic mouse model of nonalcoholic fatty liver disease. European Journal of Gastroenterology & Hepatology. 2009;21(9):973-983. doi: 10.1097/MEG.0b013e328328f461 PubMed PMID: 19307976
  18. Toda C, Diano S. Mitochondrial UCP2 in the central regulation of metabolism. Best Practice & Research Clinical Endocrinology & Metabolism. 2014;28(5):757-764. doi: 10.1016/j.beem.2014.02.006 PubMed PMID: 25256770
  19. Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35-46. doi: 10.1016/j.metabol.2014.10.015 PubMed PMID: 25497342
  20. Harris RB. Direct and indirect effects of leptin on adipocyte metabolism. Biochimica et Biophysica Acta. 2014;1842(3):414-423. doi: 10.1016/j.bbadis.2013.05.009 PubMed PMID: 23685313; PubMed Central PMCID: PMC3838442
  21. Andrews RC, Rooyackers O, Walker BR. Effects of the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone on insulin sensitivity in men with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism. 2003;88(1):285-291. doi: 10.1210/jc.2002-021194 PubMed PMID: 12519867
  22. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annual Review of Immunology. 2011;29:415-445. doi: 10.1146/annurev-immunol-031210-101322 PubMed PMID: 21219177
  23. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944-948. doi: 10.1038/nature04634 PubMed PMID: 16612386
  24. Miao H, Zhang Y, Lu Z, Liu Q, Gan L. FOXO1 involvement in insulin resistance-related pro-inflammatory cytokine production in hepatocytes. Inflammation Research. 2012;61(4):349-358. doi: 10.1007/s00011-011-0417-3 PubMed PMID: 22223069
  25. Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PloS One. 2013;8(6):e65255. doi: 10.1371/journal.pone.0065255 PubMed PMID: 23750248; PubMed Central PMCID: PMC3672145
  26. Voorhees JL, Tarr AJ, Wohleb ES, Godbout JP, Mo X, Sheridan JF, et al. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PloS One. 2013;8(3):e58488. doi: 10.1371/journal.pone.0058488 PubMed PMID: 23520517; PubMed Central PMCID: PMC3592793
  27. Foss B, Dyrstad SM. Stress in obesity: cause or consequence? Medical hypotheses. 2011;77(1):7-10. doi: 10.1016/j.mehy.2011.03.011 PubMed PMID: 21444159.
  28. Ma D, Li S, Molusky MM, Lin JD. Circadian autophagy rhythm: a link between clock and metabolism? Trends in Endocrinology and Metabolism. 2012;23(7):319-325. doi: 10.1016/j.tem.2012.03.004 PubMed PMID: 22520961; PubMed Central PMCID: PMC3389582
  29. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabolism. 2007;6(5):414-421. doi: 10.1016/j.cmet.2007.09.006 PubMed PMID: 17983587